Skip to main content
Log in

Accumulation of Potentially Toxic Elements in Viola L. (Sect. Melanium Ging.) from the Ultramafic and Non-ultramafic Soils of the Balkan Peninsula

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The aim of the present study was to assess the metal concentrations in five species of the genus Viola L. (section Melanium) from 12 ultramafic outcrops and two non-ultramafic (prolluvium and dolomite) soils from Serbia and Bosnia and Herzegovina. The concentrations of P2O5, K2O, Ca, Mg, Fe, Mn, Zn, Cu, Cr, Co, Cd and Pb in soils and plant samples, as well as their shoot-to-root ratio, biological concentration and accumulation factors were determined. Five investigated Viola species growing on 14 different localities displayed considerable differences in concentration of potentially toxic elements in their roots and its accumulation in their shoots. Viola kopaonikensis and V. beckiana from ultramafic soils could be classified as strong Ni accumulators, since moderately high level of Ni was measured in their shoots (up to 266 mg kg−1 and 337 mg kg−1, respectively), while in V. tricolor high amount of the same element was accumulated in the roots (up to 395 mg kg−1). Population of V. beckiana from dolomitic site in Bosnia and Herzegovina accumulated high concentrations of Pb in the shoots (67.1 mg kg−1), as well as of Cd in both roots and shoots (81.1 mg kg−1 and 60.5 mg kg−1). The results also suggest that V. kopaonikensis populations from the ultramafic soils of Serbia emerge as Cr accumulators, which is quite rare trait within the genus Viola. It seems that species from Melanium section apply quite different strategies against toxic elements. Future studies should strive to explain what adaptive mechanisms are hidden behind it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article (and its supplementary information files).

References

  • Alloway, B. J. (2013). Sources of heavy metals and metalloids in soils. In B. Alloway (Ed.), Heavy metals in soils (pp. 11–50). Dordrecht: Springer.

    Google Scholar 

  • Antonovics, J., Bradshaw, A. D., & Turner, R. G. (1971). Heavy metal tolerance in plants. Advances in Ecological Research, 7, 1–85.

    Google Scholar 

  • Bačeva, K., Stafilov, T., & Matevski, V. (2014). Bioaccumulation of heavy metals by endemic Viola species from the soil in the vicinity of the as-Sb-Tl mine “Allchar”, republic of Macedonia. International Journal of Phytoremediation, 16(4), 347–365.

    Google Scholar 

  • Baker, A. J. M. (1981). Accumulators and excluders-strategies in the response of plants to heavy metals. Journal of Plant Nutrition, 3(1–4), 643–654.

    CAS  Google Scholar 

  • Baker, A. J. M., Ernst, W. H. O., van der Ent, A., Malaisse, F., & Ginocchio, R. (2010). Metallophytes: The unique biological resource, its ecology and conservation status in Europe, Central Africa, and Latin America. In L. C. Batty & K. B. Hallberg (Eds.), Ecology of industrial pollution (pp. 7–40). New York: Cambridge University Press.

    Google Scholar 

  • Banásová, V., Horak, O., Čiamporová, M., Nadubinska, M., & Lichtscheidl, I. (2006). The vegetation of metalliferous and non-metalliferous grassland in two former mine regions in Central Slovakia. Biologia, 61(3), 1–7.

    Google Scholar 

  • Becquer, T., Quantin, C., Sicot, M., & Boudot, J. P. (2003). Chromium availability in ultramafic soils from New Caledonia. Science of the Total Environment, 301(1–3), 251–261.

    CAS  Google Scholar 

  • Bizoux, J. P., Brevers, F., Meerts, P., Graitson, E., & May, G. (2004). Ecology and conservation of Belgian populations of Viola calaminaria, a metallophyte with a restricted geographic distribution. Belgian Journal of Botany, 137, 91–104.

    Google Scholar 

  • Bothe, H., Vogel-Mikuš, K., Pongrac, P., Likar, M., Stepic, N., Pelicon, P., Vavpetič, P., Jeromel, L., & Regvar, M. (2013). Metallophyte status of violets of the section Melanium. Chemosphere, 93, 1844–1855.

    Google Scholar 

  • Brković, T., Malešević, M., Klisić, M., Urošević, M., Trifunović, S., Radovanović, Z., & Božanić, M. (1970). Osnovna geološka karta SFRJ 1:100000, List Čačak. Beograd: Savezni geološki zavod [In Serbian].

    Google Scholar 

  • Brooks, R. R. (1987). Serpentine and its vegetation: A multidisciplinary approach. Portland: Dioscorides Press.

    Google Scholar 

  • Brooks, R. R., Morrison, R. S., Reeves, R. D., Dudley, T. R., & Akman, Y. (1979). Hyperaccumulation of nickel by Alyssum Linnaeus (Cruciferae). Proceedings of the Royal Society of London B, 203(1153), 387–403.

    CAS  Google Scholar 

  • Brooks, R. R., Wither, E. D., & Zepernick, B. (1977). Cobalt and nickel in Rinorea species. Plant and Soil, 47(3), 707–712.

    CAS  Google Scholar 

  • Burt, R., Wilson, M. A., Mays, M. D., & Lee, C. W. (2003). Major and trace elements of selected pedons in the USA. Journal of Environmental Quality, 32, 2109–2121.

    CAS  Google Scholar 

  • Chen Jr., P. S., Toribara, T. T., & Warner, H. (1956). Microdetermination of phosphorus. Analytical Chemistry, 28(11), 1756–1758.

    CAS  Google Scholar 

  • Clemens, S. (2006). Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie, 88(11), 1707–1719.

    CAS  Google Scholar 

  • Colzi, I., Rocchi, S., Rangoni, M., Del Bubba, M., & Gonnelli, C. (2014). Specificity of metal tolerance and use of excluder metallophytes for the phytostabilization of metal polluted soils: The case of Silene paradoxa L. Environmental Science and Pollution Research, 21(18), 10960–10969.

    CAS  Google Scholar 

  • Ćirić, A. M., Novaković, D., Popović, A., Karačić, L., Jović, B. J., & Serdar, R. (1972). Osnovna geološka karta SFRJ 1:100000, List Prijepolje. Beograd: Savezni geološki zavod [In Serbian].

    Google Scholar 

  • Đurović, S., Jakovljević, K., Buzurović, U., Niketić, M., Mihailović, N., & Tomović, G. (2016). Differences in trace element profiles of three subspecies of Silene parnassica (Caryophyllaceae) growing on ophiolitic substrate. Australian Journal of Botany, 64(3), 235–245.

    Google Scholar 

  • Echevarria, G. (2018). Genesis and behaviour of ultramafic soils and consequences for nickel biogeochemistry. In A. van der Ent, G. Echevarria, A. J. Baker, & J. L. Morel (Eds.), Agromining: Farming for metals (pp. 135–156). Cham: Springer.

    Google Scholar 

  • Echevarria, G., Massoura, S. T., Sterckeman, T., Becquer, T., Schwartz, C., & Morel, J. L. (2006). Assessment and control of the bioavailability of nickel in soils. Environmental Toxicology and Chemistry: an International Journal, 25(3), 643–651.

    CAS  Google Scholar 

  • Egnér, H., Riehm, H., & Domingo, W. R. (1960). Untersuchungen über die chemische Bodenanalyse als Grundlage für die Beurteilung des Nährstoffzustandes der Böden. II. Chemische Extraktionsmethoden zur Phosphor- und Kaliumbestimmung. Kungliga Lantbrukshögskolans Annaler, 26, 199–215.

    Google Scholar 

  • FAO. (1974). The Euphrates pilot irrigation project. Methods of soil analysis. Gadeb soil laboratory (a laboratory manual). Rome: Food and Agriculture Organization.

    Google Scholar 

  • Gao, J., Luo, M., Zhu, Y., He, Y., Wang, Q., & Zhang, C. (2015). Transcriptome sequencing and differential gene expression analysis in Viola yedoensis Makino (Fam. Violaceae) responsive to cadmium (cd) pollution. Biochemical and Biophysical Research Communications, 459, 60–65.

    CAS  Google Scholar 

  • García-Giménez, R., & Jiménez-Ballesta, R. (2017). Mine tailings influencing soil contamination by potentially toxic elements. Environmental Earth Sciences, 76(1), 51.

    Google Scholar 

  • Group of authors. (1964). Osnovna geološka karta SFRJ 1:100000, List Vrnjci. Beograd: Savezni geološki zavod [In Serbian].

    Google Scholar 

  • Group of authors. (1966). Osnovna geološka karta SFRJ 1:100000, List Valjevo. Beograd: Savezni geološki zavod, Beograd [In Serbian].

    Google Scholar 

  • Group of authors. (1970). Osnovna geološka karta SFRJ 1:100000, List Novi Pazar. Beograd: Savezni geološki zavod [In Serbian].

    Google Scholar 

  • Group of authors. (1971). Osnovna geološka karta SFRL 1:100.000. List Zavidovići. Beograd: Savezni geološki zavod, [In Serbian].

  • Hettiarachchi, G. M., & Pierzynski, G. M. (2002). In situ stabilization of soil lead using phosphorus and manganese oxide: Influence of plant growth. Journal of Environmental Quality, 31(2), 564–572.

    CAS  Google Scholar 

  • Hijmans, R. J., Guarino, L., & Mathur, P. (2012). DIVA-GIS Version, 7.5 https://www.diva-gis.org/. Accessed 10 Apr 2020.

  • Horie, K., Mizuno, N., & Nosaka, S. (2000). Characteristics of nickel accumulation in native plants growing in ultramafic rock areas in Hokkaido. Soil Science and Plant Nutrition, 46(4), 853–862.

    CAS  Google Scholar 

  • Huang, D., Gong, X., Liu, Y., Zeng, G., Lai, C., Bashir, H., Zhou, L., Wang, D., Xu, P., Cheng, M., & Wan, J. (2017). Effects of calcium at toxic concentrations of cadmium in plants. Planta, 245(5), 863–873.

    CAS  Google Scholar 

  • Huang, G., Ding, C., Zhou, Z., Zhang, T., & Wang, X. (2019). A tillering application of zinc fertilizer based on basal stabilization reduces cd accumulation in rice (Oryza sativa L.). Ecotoxicology and Environmental Safety, 167, 338–344.

    CAS  Google Scholar 

  • ISO 11047. (1998). Soil quality – Determination of cadmium, chromium, cobalt, copper, lead, manganese, nickel and zinc – Flame and electrothermal atomic absorption spectrometric methods. Geneva: International Standard Organization.

  • ISO 11466. (1995). International Standard. Soil quality – extraction of trace elements soluble in aqua regia, 03–01. Geneva: International Standard Organization.

  • ISO 3166/2. (1998). Codes for the representation of names of countries and their subdivisions–part 2: Country subdivision code. Geneva: International Standard Organization.

  • ISO 6636/2. (1981). International Standard. Fruits, vegetables and derived products – determination of zinc content–part 2: atomic absorption spectrometric method. Geneva: International Standard Organization.

  • Jakovljević, K., Buzurović, U., Andrejić, G., Đurović, S., Niketić, M., Mihailović, N., & Tomović, G. (2015). Trace elements contents and accumulation in soils and plant species Goniolimon tataricum (L.) Boiss. (Plumbaginaceae) from the ultramafic and dolomitic substrates of the Central Balkans. Carpathian Journal of Earth and Environmental Sciences, 10(1), 147–160.

    Google Scholar 

  • Jakovljević, K., Đurović, S., Antušević, M., Mihailović, N., Buzurović, U., & Tomović, G. (2019). Heavy metal tolerance of Pontechium maculatum (Boraginaceae) from several ultramafic localities in Serbia. Botanica Serbica, 43(1), 73–83.

    Google Scholar 

  • Jakovljević, K., Mišljenović, T., Savović, J., Ranković, D., Ranđelović, D., Mihailović, N., & Jovanović, S. (2020). Accumulation of trace elements in Tussilago farfara colonizing post-flotation tailing sites in Serbia. Environmental Science and Pollution Research, 27(4), 4089–4103.

    Google Scholar 

  • Jakovljević, K., Mišljenović, T., Jovanović, S., Grujić, M., Mihailović, N., & Tomović, G. (2021). Plantago subulata as indicator of potentially toxic elements in the substrate. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-020-11952-0.

    Article  Google Scholar 

  • Jędrzejczyk, M., Rostański, A., & Małkowski, E. (2002). Accumulation of zinc and lead in selected taxa of the genus Viola L. Acta Biologica Cracoviensia Series Botanica, 44, 49–55.

    Google Scholar 

  • Kabata-Pendias, A. (2011). Trace elements in soils and plants (4th ed.). Boca Raton, London, New York: CRC Press. Taylor & Francis Group.

    Google Scholar 

  • Kazakou, E., Adamidis, G. C., Baker, A. J., Reeves, R. D., Godino, M., & Dimitrakopoulos, P. G. (2010). Species adaptation in serpentine soils in Lesbos Island (Greece): Metal hyperaccumulation and tolerance. Plant and Soil, 332(1–2), 369–385.

    CAS  Google Scholar 

  • Kim, K. R., Owens, G., Naidu, R., & Kim, K. H. (2007). Assessment techniques of heavy metal bioavailability in soil: A critical review. Korean Society of Soil Science and Fertilizer: Doctoral dissertation.

    Google Scholar 

  • Korzeniowska, J., & Stanislawska-Glubiak, E. (2017). Proposal of new convenient extractant for assessing phytoavailability of heavy metals in contaminated sandy soil. Environmental Science and Pollution Research, 24(17), 14857–14866.

    CAS  Google Scholar 

  • Lei, M., Chen, T.-B., Huang, Z.-C., Wang, Y. D., & Huang, Y.-Y. (2008). Simultaneous compartmentalization of lead and arsenic in co-hyperaccumulator Viola principis H. de Boiss.: An application of SRXRF microprobe. Chemosphere, 72, 1491–1496.

    CAS  Google Scholar 

  • Liao, M. T., Hedley, M. J., Woolley, D. J., Brooks, R. R., & Nichols, M. A. (2000). Copper uptake and translocation in chicory (Cichorium intybus L. cv. Grasslands Puna) and tomato (Lycopersicon esculentum Mill. cv. Rondy) plants grown in NFT system. I. Copper uptake and distribution in plants. Plant and Soil, 221(2), 135–142.

  • Liu, J., Duan, C. Q., Zhang, X. H., Zhu, Y. N., & Hu, C. (2011). Characteristics of chromium (III) uptake in hyperaccumulator Leersia hexandra Swartz. Environmental and Experimental Botany, 74, 122–126.

    CAS  Google Scholar 

  • Liu, P., Tang, X., Gong, C., & Xu, G. (2010). Manganese tolerance and accumulation in six Mn hyperaccumulators or accumulators. Plant and Soil, 335(1–2), 385–395.

    CAS  Google Scholar 

  • Liu, W., Shu, W. S., & Lan, C. Y. (2004). Viola baoshanensis, a plant that hyperaccumulates cadmium. Chinese Science Bulletin, 49(1), 29–32.

    CAS  Google Scholar 

  • Lombini, A., Dinelli, E., Ferrari, C., & Simoni, A. (1998). Plant-soil relationships in the serpentinite screes of Mt Prinzera (northern Apennines, Italy). Journal of Geochemical Exploration, 64(1), 19–33.

    CAS  Google Scholar 

  • Marcussen, Th., Heier, L., Brysting, A. K., Oxelman, B., & Jakobsen, K. S. (2015). From gene trees to a dated allopolyploid network: Insights from the angiosperm genus Viola (Violaceae). Systematic Biology, 64(1, 84–101.

  • Markert, B. (1995). Sample preparation (cleaning, drying, homogenization) for trace element analysis in plant matrices. Science of the Total Environment, 176, 45–61.

    CAS  Google Scholar 

  • Massoura, S. T., Echevarria, G., Leclerc-Cessac, E., & Morel, J. L. (2005). Response of excluder, indicator, and hyperaccumulator plants to nickel availability in soils. Soil Research, 42(8), 933–938.

    Google Scholar 

  • Matko Stamenković, U., Andrejić, G., Mihailović, N., & Šinžar-Sekulić, J. (2017). Hyperaccumulation of Ni by Alyssum murale Waldst. & Kit. from ultramafics in Bosnia and Herzegovina. Applied Ecology and Environmental Research, 15(3), 359–372.

  • McGrath, D. (1996). Application of single and sequential extraction procedures to polluted and unpolluted soils. Science of the Total Environment, 178(1), 37–44.

    CAS  Google Scholar 

  • McKeague, J. A. (1978). Manual on soil sampling and methods of analysis. Ottawa: Canadian Society of Soil Science.

    Google Scholar 

  • Mišljenović, T., Jakovljević, K., Jovanović, S., Mihailović, N., Gajić, B., & Tomović, G. (2018). Micro-edaphic factors affect intra-specific variations in trace element profiles of Noccaea praecox on ultramafic soils. Environmental Science and Pollutuion Research, 25, 31737–31751.

    Google Scholar 

  • Mišljenović, T., Jovanović, S., Mihailović, N., Gajić, B., Tomović, G., Baker, A. J. M., Echeverria, G., & Jakovljević, K. (2020). Natural variation of nickel, zinc and cadmium (hyper)accumulation in facultative serpentinophytes Noccaea kovatsii and N. praecox. Plant and Soil, 447(1), 475–495.

    Google Scholar 

  • Mojsilović, S., Baklajić, D., & Đoković, I. (1977). Osnovna geološka karta SFRJ 1:100000, List Titovo Užice. Beograd: Savezni geološki zavod [In Serbian].

    Google Scholar 

  • Mojsilović, S., Baklajić, D., & Đoković, I. (1978). Osnovna geološka karta SFRJ 1:100000, List Sjenica. Beograd: Savezni geološki zavod [In Serbian].

    Google Scholar 

  • Oliveira, H. (2012). Chromium as an environmental pollutant: Insights on induced plant toxicity. Journal of Botany, 2012, 375843.

    Google Scholar 

  • Operta, M., & Bušatlić, N. (2018). Contribution to the knowledge of the magnesite deposits in Bosnia and Herzegovina. Geografski Pregled, 38, 107–122.

    Google Scholar 

  • Oze, C., Fendorf, S., Bird, D. K., & Coleman, R. G. (2004). Chromium geochemistry of serpentine soils. International Geology Review, 46(2), 97–126.

    Google Scholar 

  • Pędziwiatr, A., Kierczak, J., Waroszewski, J., Ratié, G., Quantin, C., & Ponzevera, E. (2018). Rock-type control of Ni, Cr, and co phytoavailability in ultramafic soils. Plant and Soil, 423(1–2), 339–362.

    Google Scholar 

  • Proctor, J. (1999). Toxins, nutrient shortages and droughts: The serpentine challenge. Trends in Ecology & Evolution, 14(9), 334–335.

    Google Scholar 

  • Proctor, J., & Woodell, S. R. (1975). The ecology of serpentine soils. Advances in Ecological Research, 9, 255–366.

    Google Scholar 

  • Psaras, G. K., & Constantinidis, T. (2009). Two new nickel hyperaccumulators from the Greek serpentine flora. Fresenius Environmental Bulletin, 18, 798–803.

    CAS  Google Scholar 

  • Pugh, R. E., Dick, D. G., & Fredeen, A. L. (2002). Heavy metal (Pb, Zn, cd, Fe, and cu) contents of plant foliage near the anvil range lead/zinc mine, Faro, Yukon territory. Ecotoxicology and Environmental Safety, 52(3), 273–279.

    CAS  Google Scholar 

  • R Core Team (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.r-project.org/. Accessed 25 Apr 2020.

  • Reeves, R. (1992). Hyperaccumulation of nickel by serpentine plants. In J. Proctor, A. Baker, & R. Reeves (Eds.), The vegetation of ultramafic (serpentine) soils (pp. 253–277). Andover: Intercept Ltd..

    Google Scholar 

  • Reeves, R. D., & Baker, A. J. M. (2000). Metal-accumulating plants. In I. Raskin & B. D. Ensley (Eds.), Phytoremediation of toxic metals: Using plants to clean up the environment (pp. 193–229). New York: John Wiley & Sons.

    Google Scholar 

  • Reeves, R. D., Baker, A. J. M., Borhidi, A., & Berazain, R. (1999). Nickel hyperaccumulation in the serpentine flora of Cuba. Annals of Botany, 83(1), 29–38.

    CAS  Google Scholar 

  • Reeves, R. D., Baker, A. J. M., Jaffré, T., Erskine, P. D., Echevarria, G., & van der Ent, A. (2018). A global database for plants that hyperaccumulate metal and metalloid trace elements. New Phytologist, 218(2), 407–411.

    Google Scholar 

  • Reeves, R. D., Macfarlane, R. M., & Brooks, R. R. (1983). Accumulation of nickel and zinc by western north American genera containing serpentine-tolerant species. American Journal of Botany, 70(9), 1297–1303.

    CAS  Google Scholar 

  • Reeves, R. D., van der Ent, A., & Baker, A. J. M. (2018). Global distribution and ecology of Hyperaccumulator plants. In A. van der Ent, G. Echevarria, A. J. M. Baker, & J. L. Morel (Eds.), Agromining: Farming for metals (pp. 75–92). Cham: Springer.

    Google Scholar 

  • Remigio, A. C., Chaney, R. L., Baker, A. J. M., Edraki, M., Erskine, P. D., Echevarria, G., & van der Ent, A. (2020). Phytoextraction of high value elements and contaminants from mining and mineral wastes: Opportunities and limitations. Plant and Soil, 449, 11–37.

    Google Scholar 

  • Rieuwerts, J., Thornton, I., Farago, M., & Ashmore, M. (1998). Quantifying the influence of soil properties on the solubility of metals by predictive modelling of secondary data. Chemical Speciation & Bioavailability, 10(3), 83–94.

    CAS  Google Scholar 

  • Rizwan, M., Ali, S., Rehman, M. Z., & Maqbool, A. (2019). A critical review on the effects of zinc at toxic levels of cadmium in plants. Environmetal Science and Pollution Research, 26(7), 6279–6289.

    CAS  Google Scholar 

  • Shang, E., Xu, E., Zhang, H., & Huang, C. (2019). Temporal-spatial trends in potentially toxic trace element pollution in farmland soil in the major grain-producing regions of China. Scientific Reports, 9(1), 1–14.

    Google Scholar 

  • Słomka, A., Godzik, B., Szarek-Łukaszewska, G., Shuka, L., Hoef-Emden, K., & Bothe, H. (2015). Albanian violets of the section Melanium, their morphological variability, genetic similarity and their adaptations to serpentine or chalk soils. Journal of Plant Physiology, 174, 110–123.

    Google Scholar 

  • Słomka, A., Kuta, E., Szarek-Łukaszewska, G., Godzik, B., Kapusta, P., Tylko, G., & Bothe, H. (2011). Violets of the section Melanium, their colonization by arbuscular mycorrhizal fungi and their occurrence on heavy metal heaps. Journal of Plant Physiology, 168, 1191–1199.

    Google Scholar 

  • Słomka, A., Żabicka, J., Shuka, L., Bohdanowicz, J., & Kuta, E. (2018). Lack of correlation between pollen aperture number and environmental factors in pansies (Viola L., sect. Melanium Ging.) – Pollen heteromorphism re-examined. Plant Biology, 20, 555–562.

    Google Scholar 

  • Stevanović, B., Dražić, G., Tomović, G., Šinžar-Sekulić, J., Melovski, L., Novović, I., & Marković, D. M. (2010). Accumulation of arsenic and heavy metals in some Viola species from an abandoned mine, Alchar, republic of Macedonia (FYROM). Plant Biosystems, 144(3), 644–655.

    Google Scholar 

  • Stevanović, V., Tan, K., & Iatrou, G. (2003). Distribution of the endemic Balkan flora on serpentine I. – Obligate serpentine endemics. Plant Systematics and Evolution, 242(1–4), 149–170.

    Google Scholar 

  • Strajin, V., Mojićević, M., Pamić, J., Sunarić-Pamić, O., Olujić, J., Veljković, D., Đorđević, Đ., & Kubat, J. (1977). Osnovna geološka karta SFRJ 1:100.000. List Vlasenica. Beograd: Savezni geološki zavod [In Serbian].

    Google Scholar 

  • Sychta, K., Słomka, A., & Kuta, E. (2020). Garden pansy (Viola × wittrockiana gams.) – A good candidate for the revitalisation of polluted areas. Plant, Soil and Environment, 66, 272–280.

    CAS  Google Scholar 

  • Thiers, B. (2020). Index Herbariorum: A global directory of public herbaria and associated staff. New York botanical Garden's virtual herbarium. Available at http://sweetgum.nybg.org/ih (continuously updated).

  • Thorpe, A., & Harrison, R. M. (2008). Sources and properties of non-exhaust particulate matter from road traffic: A review. Science of the Total Environment, 400(1–3), 270–282.

    CAS  Google Scholar 

  • Tomović, G., Buzurović, U., Đurović, S., Vicić, D., Mihailović, N., & Jakovljević, K. (2018). Strategies of heavy metal uptake by three Armeria species growing on different geological substrates in Serbia. Environmental Science and Pollution Research, 25(1), 507–522.

    Google Scholar 

  • Tomović, G., Niketić, M., Lazarević, M., & Melovski, L. (2016). Taxonomic reassessment of Viola aetolica and Viola elegantula (V. sect. Melanium, Violaceae), with descriptions of two new species from the Balkan Peninsula. Phytotaxa, 253(4), 237–265.

    Google Scholar 

  • van der Ent, A., Baker, A. J. M., Reeves, R. D., Pollard, A. J., & Schat, H. (2013b). Hyperaccumulators of metal and metalloid trace elements: Facts and fiction. Plant and Soil, 362, 319–334.

    Google Scholar 

  • van der Ent, A., Baker, A. J. M., van Balgooy, M. M. J., & Tjoa, A. (2013a). Ultramafic nickel laterites in Indonesia (Sulawesi, Halmahera): Mining, nickel hyperaccumulators and opportunities for phytomining. Journal of Geochemical Exploration, 128, 72–79.

    Google Scholar 

  • van der Ent, A., Ocenar, A., Tisserand, R., Sugau, J. B., Echevarria, G., & Erskine, P. D. (2019). Herbarium X-ray fluorescence screening for nickel, cobalt and manganese hyperaccumulator plants in the flora of Sabah (Malaysia, Borneo Island). Journal of Geochemical Exploration, 202, 49–58.

    Google Scholar 

  • van Reeuwijk, L. P. (2002). Procedures for soil analysis, 6th ed. technical paper 9. International Soil Reference and Information Centre: Wageningen. Available at https://www.isric.org/Isric/Webdocs/Docs/ISRIC_TechPap09_2002.pdf.

  • Vujnović, L. (1980). Osnovna geološka karta SFRJ 1:100.000. List Bugojno. Beograd: Savezni geološki zavod [In Serbian].

    Google Scholar 

  • Wahlert, G. A., Marcussen, T., de Paula-Souza, J., Feng, M., & Ballard Jr., H. E. (2014). A phylogeny of the Violaceae (Malpighiales) inferred from plastid DNA sequences: Implications for generic diversity and intrafamilial classification. Systematic Botany, 39(1), 239–252.

    Google Scholar 

  • Wei, T., & Simko, V. (2017). R package “corrplot”: Visualization of a correlation matrix (version 0.84). https://github.com/taiyun/corrplot. Accessed 14 Apr 2020.

  • Wu, C., Liao, B., Wang, S. L., Zhang, J., & Li, J. T. (2010). Pb and Zn accumulation in a cd-hyperaccumulator (Viola baoshanensis). International Journal of Phytoremediation, 12, 574–585.

    CAS  Google Scholar 

  • Xue, S. G., Chen, Y. X., Reeves, R. D., Baker, A. J. M., Lin, Q., & Fernando, D. R. (2004). Manganese uptake and accumulation by the hyperaccumulator plant Phytolacca acinosa Roxb. (Phytolaccaceae). Environmental Pollution, 131(3), 393–399.

  • Yoon, J., Cao, X., Zhou, Q., & Ma, L. Q. (2006). Accumulation of Pb, cu, and Zn in native plants growing on a contaminated Florida site. Science of the Total Environment, 368(2–3), 456–464.

    CAS  Google Scholar 

  • Zhong, W. L., Li, J. T., Chen, Y. T., Shu, W. S., & Liao, B. (2012). A study on the effects of lead, cadmium and phosphorus on the lead and cadmium uptake efficacy of Viola baoshanensis inoculated with arbuscular mycorrhizal fungi. Journal of Environmental Monitoring, 14(9), 2497–2504.

    CAS  Google Scholar 

Download references

Acknowledgments

The Ministry of Education, Science and Technological Development of the Republic of Serbia supported this research.

Funding

This work was supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia (number 451–03-68/2020–14/ 200178).

Author information

Authors and Affiliations

Authors

Contributions

Ksenija Jakovljević and Gordana Tomović participated in the study design, collecting the material, data analysis and interpretation and manuscript preparation. Sanja Djurović and Uroš Buzurović participated in collecting of material and sample preparation. Marjan Niketić and Đorđije Milanović participated in material collecting. Nevena Mihailović participated in sample analysis.

Corresponding author

Correspondence to Ksenija Jakovljević.

Ethics declarations

Conflicts of Interest/Competing Interests

None.

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Code Availability

Not applicable

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Online Resource 1

Analysis of variance of pH, % of organic C and concentrations (mg kg−1) of P2O5, K2O, Ca, Mg, Ca/Mg, Fe, Mn, Zn, Cu, Ni, Cr, Pb, Cd and Co between different: A) soil samples; and B) geological substrates (DOCX 15 kb)

Online Resource 2

Correlation matrix between concentrations of analyzed elements in the soil and plant tissue samples of five Viola species (XLSX 40 kb)

Online Resource 3

Analysis of variance of concentrations (mg kg−1) of P2O5, K2O, Ca, Mg, Ca/Mg, Fe, Mn, Zn, Cu, Ni, Cr, Pb, Cd and Co between different: A) plant samples; B) species; and C) geological substrates (DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tomović, G., Đurović, S., Buzurović, U. et al. Accumulation of Potentially Toxic Elements in Viola L. (Sect. Melanium Ging.) from the Ultramafic and Non-ultramafic Soils of the Balkan Peninsula. Water Air Soil Pollut 232, 46 (2021). https://doi.org/10.1007/s11270-021-04992-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-021-04992-w

Keywords

Navigation