Skip to main content

Advertisement

Log in

Salinity Distribution and Sediment Flux in the Estuarine Xuanmen Reservoir

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The salinity distribution in the water and sediment of the Xuanmen estuarine reservoir was investigated by a field survey. Additionally, a sediment flux model was built to predict the solute release from the sediment. The results indicate that the water in the reservoir is currently not suitable for drinking because of its high chloride concentration. The long water retention time is found to be responsible for the high electrical conductivity values in zone II of the reservoir. Our simulations show that the chloride release from the sediment will decrease slowly, nearly stabilizing, in the next 40 years, and the chloride released per stored water volume will be reduced from 5.0 to 2.9 mg/L. The high chloride concentration in the reservoir is probably caused by the extremely uneven distribution of water retention time in the reservoir, whereby the accumulated chloride cannot be effectively diluted by freshwater from the tributaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bear, J. (1972). Dynamics of fluids in porous media. New York: American Elsevier.

    Google Scholar 

  • Blasco, J., Sáenz, V., & Gómez-Parra, A. (2000). Heavy metal fluxes at the sediment–water interface of three coastal ecosystems from south-west of the Iberian Peninsula. Science of the Total Environment, 247(2–3), 189–199.

    Article  CAS  Google Scholar 

  • Branco, C. W., Kozlowsky-Suzuki, B., Sousa-Filho, I. F., Guarino, A. W., & Rocha, R. J. (2009). Impact of climate on the vertical water column structure of Lajes Reservoir (Brazil): a tropical reservoir case. Lakes & Reservoirs: Research & Management, 14(3), 175–191.

    Article  CAS  Google Scholar 

  • Cheevaporn, V., Jacinto, G. S., & San Diego-McGlone, M. L. (1995). Heavy metal fluxes in Bang Pakong River Estuary, Thailand: sedimentary vs diffusive fluxes. Marine Pollution Bulletin, 31(4–12), 290–294.

    Article  CAS  Google Scholar 

  • China Soil Society Agricultural Chemistry Committee (CSSACC). (1983). The general analysis methods of soil agricultural chemistry. Beijing: China Science Press (in Chinese).

    Google Scholar 

  • Chowdhury, M., & Bakri, D. A. (2006). Diffusive nutrient flux at the sediment–water interface in Suma Park Reservoir, Australia. Hydrological Sciences Journal, 51(1), 144–156.

    Article  CAS  Google Scholar 

  • Fan, C., Zhang, L., Qin, B., Wang, S., Hu, W., & Zhang, C. (2004). Estimation on dynamic release of phosphorus from wind-induced suspended particulate matter in Lake Taihu. Science in China Series D: Earth Sciences, 47(8), 710–719.

    Article  CAS  Google Scholar 

  • Gin, K. Y. H., & Gopalakrishnan, A. P. (2009). Sediment oxygen demand and nutrient fluxes for a tropical reservoir in Singapore. Journal of Environmental Engineering, 136(1), 78–85.

    Article  Google Scholar 

  • Grant, S. B., Litton-Mueller, R. M., & Ahn, J. H. (2011). Measuring and modeling the flux of fecal bacteria across the sediment-water interface in a turbulent stream. Water Resources Research, 47(5), W05517.

    Article  Google Scholar 

  • Haggard, B. E., Scott, J. T., & Patterson, S. (2012). Sediment phosphorus flux in an Oklahoma reservoir suggests reconsideration of watershed management planning. Lake and Reservoir Management, 28(1), 59–69.

    Article  CAS  Google Scholar 

  • Han, H., Lu, X., Burger, D. F., Joshi, U. M., & Zhang, L. (2014). Nitrogen dynamics at the sediment–water interface in a tropical reservoir. Ecological Engineering, 73, 146–153.

    Article  Google Scholar 

  • Hannan, H. H., Fuchs, I. R., & Whitenberg, D. C. (1979). Spatial and temporal patterns of temperature, alkalinity, dissolved oxygen and conductivity in an oligo-mesotrophic, deep-storage reservoir in central Texas. Hydrobiologia, 66(3), 209–211.

    Article  CAS  Google Scholar 

  • Huttunen, J. T., Väisänen, T. S., Hellsten, S. K., & Martikainen, P. J. (2006). Methane fluxes at the sediment-water interface in some boreal lakes and reservoirs. Boreal Environment Research, 11(1), 27–34.

    CAS  Google Scholar 

  • Ignatieva, N. V. (1999). Nutrient exchange across the sediment-water interface in the eastern Gulf of Finland. Boreal Environment Research, 4(4), 295–306.

    CAS  Google Scholar 

  • Jin, X., Jiang, X., Yao, Y., Li, L., & Wu, F. C. (2006). Effects of light and oxygen on the uptake and distribution of phosphorus at the sediment–water interface. Science of the Total Environment, 357(1–3), 231–236.

    Article  CAS  Google Scholar 

  • Lee, Y. G., Kang, J. H., Ki, S. J., Cha, S. M., Cho, K. H., Lee, Y. S., Park, Y., Lee, S. W., & Kim, J. H. (2010). Factors dominating stratification cycle and seasonal water quality variation in a Korean estuarine reservoir. Journal of Environmental Monitoring, 12(5), 1072–1081.

    Article  CAS  Google Scholar 

  • Liikanen, A., & Martikainen, P. J. (2003). Effect of ammonium and oxygen on methane and nitrous oxide fluxes across sediment–water interface in a eutrophic lake. Chemosphere, 52(8), 1287–1293.

    Article  CAS  Google Scholar 

  • Lu, Y., & Li, C. (1983). Discussion on the experimental formula of measuring total salt content by conductance method in coastal saline soil of Zhejiang Province. Journal of Zhejiang Agricultural Sciences, 1983(05), 237–242 (In Chinese).

    Google Scholar 

  • Mu, D., Yuan, D., Feng, H., Xing, F., Teo, F. Y., & Li, S. (2017). Nutrient fluxes across sediment-water interface in Bohai Bay Coastal Zone, China. Marine Pollution Bulletin, 114(2), 705–714.

    Article  CAS  Google Scholar 

  • Pakhomova, S. V., Hall, P. O., Kononets, M. Y., Rozanov, A. G., Tengberg, A., & Vershinin, A. V. (2007). Fluxes of iron and manganese across the sediment–water interface under various redox conditions. Marine Chemistry, 107(3), 319–331.

    Article  CAS  Google Scholar 

  • Park, Y., Cho, K. H., Park, J., Cha, S. M., & Kim, J. H. (2015). Development of early-warning protocol for predicting chlorophyll-a concentration using machine learning models in freshwater and estuarine reservoirs, Korea. Science of the Total Environment, 502, 31–41.

    Article  CAS  Google Scholar 

  • Peng, H., Zheng, X., Chen, L., & Wei, Y. (2016). Analysis of numerical simulations and influencing factors of seasonal manganese pollution in reservoirs. Environmental Science and Pollution Research, 23(14), 14362–14372.

    Article  CAS  Google Scholar 

  • Shackelford, C. D., & Daniel, D. E. (1991). Diffusion in saturated soil. I: Background. Journal of Geotechnical Engineering, 117(3), 467–484.

    Article  Google Scholar 

  • Shotbolt, L., Hutchinson, S. M., & Thomas, A. D. (2006). Sediment stratigraphy and heavy metal fluxes to reservoirs in the southern Pennine uplands, UK. Journal of Paleolimnology, 35(2), 305–322.

    Article  Google Scholar 

  • Soares, M. C. S., Marinho, M. M., Huszar, V. L., Branco, C. W., & Azevedo, S. M. (2008). The effects of water retention time and watershed features on the limnology of two tropical reservoirs in Brazil. Lakes & Reservoirs: Research & Management, 13(4), 257–269.

    Article  Google Scholar 

  • Vukovic, D., Vukovic, Z., & Stankovic, S. (2014). The impact of the Danube Iron Gate Dam on heavy metal storage and sediment flux within the reservoir. Catena, 113, 18–23.

    Article  CAS  Google Scholar 

  • Xia, X., Li, S., & Shen, Z. (2008). Effect of nitrification on nitrogen flux across sediment-water interface. Water Environment Research, 80(11), 2175–2182.

    Article  CAS  Google Scholar 

  • Xu, Z., Woodhouse, J. N., Te, S. H., Gin, K. Y. H., He, Y., Xu, C., & Chen, L. (2018). Seasonal variation in the bacterial community composition of a large estuarine reservoir and response to cyanobacterial proliferation. Chemosphere, 202, 576–585.

    Article  CAS  Google Scholar 

  • Yu, J., Zhang, Y., Zhong, J., Ding, H., Zheng, X., Wang, Z., & Zhang, Y. (2019). Water-level alterations modified nitrogen cycling across sedimentwater interface in the Three Gorges Reservoir. Environmental Science and Pollution Research, 26(32), 1–13.

Download references

Funding

This project was supported by the National Natural Science Foundation of China (51878597).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhou Yongchao.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruiping, S., Yixuan, H., Yiping, Z. et al. Salinity Distribution and Sediment Flux in the Estuarine Xuanmen Reservoir. Water Air Soil Pollut 231, 315 (2020). https://doi.org/10.1007/s11270-020-04699-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-020-04699-4

Keywords

Navigation