Skip to main content

Advertisement

Log in

Photocatalytic Properties of Commercially Available TiO2: Study of Fotosan® and InterBrasil® FA-101 for H2S Degradation Using UV and Solar Radiation

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

This paper proposes the study and comparison of two commercial photocatalysts of TiO2 when applied as coating on a fibrocement roof tile. Are reported their respective photocatalytic activities, chemical, morphological, and textural characteristics. For that, commercial photocatalysts InterBrasil® FA-101 and Fotosan® were deposited on fibrocement support to perform photocatalytic activity tests and characterization analyses. The measurement of the photocatalytic activity of each sample was carried out through the efficiency of H2S degradation, using artificial (UV lamp) and natural (solar lighting) radiation. The surfaces formed with this photocatalyst coating were characterized by scanning electron microscopy, with energy-dispersive X-ray spectroscopy (SEM-EDX), X-ray diffraction (XRD), nitrogen adsorption-desorption isotherms, diffuse reflectance spectroscopy (DRS), and Fourier infrared transformation using attenuated total reflection (ATR-FTIR). The volumetric flow rate and saturation time (deactivation) were evaluated as operational performance parameters of the degradation reaction. The X-ray diffraction shows that TiO2 formed in the coatings correspond to the anatase phase. In addition, the pore volume of the coatings was from 4.9 to 9.0 × 10−3 g cm−3 and the superficial area was from 19.6 to 30.5 m2 g−1 that is considered relatively high. The results showed that, unlike the Fotosan®, the type of radiation used had a greater influence on the InterBrasil® FA-101, since there was a reduction of the photocatalytic activity when the solar radiation was used. The H2S degradation efficiency of 80% was obtained for a residence time (RT) of 115 s using Fotosan®, whereas that for InterBrasil® FA-101 was reached 45% for the same RT. Lower on the photocatalytic activity was observed after 30 min and 390 min of reaction for the InterBrasil® FA-101 and Fotosan®, respectively. The sample containing Fotosan® was the most effective photocatalyst in comparison with InterBrasil® FA-101.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Águia, C., Ângelo, J., Madeira, L. M., & Mendes, A. (2010). Influence of photocatalytic paint components on the photoactivity of P25 towards NO abatement. Catalysis Today, 151, 77–83.

    Article  CAS  Google Scholar 

  • Ahmad, R., Ahmad, Z., Khan, A. U., Mastoi, N. R., Aslam, M., & Kim, J. (2016). Photocatalytic systems as an advanced environmental remediation: recent developments, limitations and new avenues for applications. Journal of Environmental Chemical Engineering, 4, 4143–4164.

    Article  CAS  Google Scholar 

  • Alberici, R. M., & Jardim, W. F. (1997). Photocatalytic destruction of VOCs in the gas-phase using titanium dioxide. Applied Catalysis B: Environmental, 14, 55–68.

    Article  CAS  Google Scholar 

  • Alonso-Tellez, R., Masson, R., Robert, D., Keller, N., & Keller, V. (2012a). Comparison of Hombikat UV100 and P25 TiO2 performance in gas-phase photocatalytic oxidation reactions. Journal of Photochemistry and Photobiology A: Chemistry, 250, 58–65.

    Article  CAS  Google Scholar 

  • Alonso-Tellez, A., Robert, D., Keller, N., & Keller, V. (2012b). A parametric study of the UV-A photocatalytic oxidation of H2S over TiO2. Applied Catalysis B: Environmental, 115-116, 209–218.

    Article  CAS  Google Scholar 

  • Anet, B., Lemasle, M., Couriol, C., Lendormi, T., Amrane, A., Cloirec, P. L., Cogny, G., & Fillières, R. (2013). Characterization of gaseous odorous emissions from a rendering plant by GC/MS and treatment by biofiltration. Journal of Environmental Management, 128, 981–987.

    Article  CAS  Google Scholar 

  • Ângelo, J., Andrade, L., & Mendes, A. (2014). Highly active photocatalytic paint for NOx abatement under real-outdoor conditions. Applied Catalysis A: General, 484, 17–25.

    Article  CAS  Google Scholar 

  • Ballari, M. M., Hunger, M., Hüsken, G., & Brouwers, H. J. H. (2010). NOx photocatalytic degradation employing concrete pavement containing titanium dioxide. Applied Catalysis B: Environmental, 95, 245–254.

    Article  CAS  Google Scholar 

  • Barrett, E. P., Joyner, L. G., & Halenda, P. P. (1951). The determination of pore volume and area distributions in porous substances, I. Computations from nitrogen isotherms. Journal of the American Chemical Society, 73, 373–380.

    Article  CAS  Google Scholar 

  • Binas, V., Papadaki, D., Maggos, T., Katsanaki, A., & Kiriakidis, G. (2018). Study of innovative photocatalytic cement based coatings: the effect of supporting materials. Construction and Building Materials, 168, 923–930.

    Article  CAS  Google Scholar 

  • Blommaerts, N., Asapu, R., Claes, N., Bals, S., Lenaerts, S., & Verbruggen, S. W. (2017). Gas phase photocatalytic spiral reactor for fast and efficient pollutant degradation. Chemical Engineering Journal, 316, 850–856.

    Article  CAS  Google Scholar 

  • Brancher, M., Franco, D., & Lisboa, H. M. (2016). Photocatalytic oxidation of H2S in the gas phase over TiO2-coated glass fiber filter. Environmental Technology, 37, 2852–2864.

    Article  CAS  Google Scholar 

  • Brunauer, S., Emmett, P. H., & Teller, E. (1938). Adsorption of gases in multimolecular layers. Journal of the American Chemical Society, 60, 309–319.

    Article  CAS  Google Scholar 

  • Canela, M. C., Alberici, R. M., & Jardim, W. F. (1998). Gas-phase destruction of H2S using TiO2/UV-VIS. Journal of Photochemistry and Photobiology A: Chemistry, 112, 73–80.

    Article  CAS  Google Scholar 

  • Cantau, C., Larribau, S., Pigot, T., Simon, M., Maurette, M. T., & Lacombe, S. (2007). Oxidation of nauseous sulfur compounds by photocatalysis or photosensitization. Catalysis Today, 122, 27–38.

    Article  CAS  Google Scholar 

  • Chang, H. T., Wu, N., & Zhu, F. (2000). A kinetic model for photocatalytic degradation of organic contaminants in a thin-film TiO2 catalyst. Water Research, 34, 407–416.

    Article  Google Scholar 

  • Chen, J., & Poon, C. (2009). Photocatalytic construction and building materials: from fundamentals to applications. Building and Environment, 44, 1899–1906.

    Article  Google Scholar 

  • Cheng, B., Le, Y., & Yu, J. (2010). Preparation and enhanced photocatalytic activity of Ag@TiO2 core–shell nanocomposite nanowires. Journal of Hazardous Materials, 177, 971–977.

    Article  CAS  Google Scholar 

  • Costa, A., Chiarello, G. L., Selli, E., & Guarino, M. (2012). Effects of TiO2 based photocatalytic paint on concentrations and emissions of pollutants and on animal performance in a swine weaning unit. Journal of Environmental Management, 96, 86–90.

    Article  CAS  Google Scholar 

  • Doucet, N., Bocquillon, F., Zahraa, O., & Bouchy, M. (2006). Kinetics of photocatalytic VOCs abatement in a standardized reactor. Chemosphere, 65, 1188–1196.

    Article  CAS  Google Scholar 

  • Dubinin, M. M. (1960). The potential theory of adsorption of gases and vapors for adsorbents with energetically nonuniform surfaces. Chemical Reviews, 60, 235–241.

    Article  CAS  Google Scholar 

  • Fagan, R., Synnott, D. W., McCormack, D. E., & Pillai, S. C. (2016). An effective method for the preparation of high temperature stable anatase TiO2 photocatalysts. Applied Surface Science, 372, 447–452.

    Article  CAS  Google Scholar 

  • Fan, W., Chan, K. Y., Zhang, C., Zhang, K., Ning, Z., & Leung, M. K. H. (2018). Solar photocatalytic asphalt for removal of vehicular NOx: a feasibility study. Applied Energy, 225, 535–541.

    Article  CAS  Google Scholar 

  • Fotosan. (2016). Rapporto di prova su attività fototocatalitica, campioni Coverplast Photosan A, Photosan B, Photosan C and Photoglass. Universita' Degli Studi Torino – Dipartimento Di Chimica, 1–5.

  • Fujishima, A., & Zhang, X. (2006). Titanium dioxide photocatalysis: present situation and future approaches. Comptes Rendus Chimie, 9, 750–760.

    Article  CAS  Google Scholar 

  • Fujishima, A., Zhang, X., & Tryk, D. A. (2008). TiO2 photocatalysis and related surface phenomena. Surface Science Reports, 63, 515–582.

    Article  CAS  Google Scholar 

  • Grandclerc, A., Guéguen-Minerbe, M., Nour, I., Dangla, P., & Chaussadent, T. (2017). Impact of cement composition on the adsorption of hydrogen sulphide and its subsequent oxidation onto cementitious material surfaces. Construction and Building Materials, 152, 576–586.

    Article  CAS  Google Scholar 

  • Guillard, C., Baldassare, D., Duchamp, C., Ghazzal, M. N., & Daniele, S. (2007). Photocatalytic degradation and mineralization of a malodorous compound (dimethyldisulfide) using a continuous flow reactor. Catalysis Today, 122, 160–167.

    Article  CAS  Google Scholar 

  • Haghighatmamaghani, A., Haghighat, F., & Lee, C. S. (2019). Performance of various commercial TiO2 in photocatalytic degradation of a mixture of indoor air pollutants: effect of photocatalyst and operating parameters. Science and Technology for the Built Environment, 25, 600–614.

    Article  Google Scholar 

  • He, Z., Li, J., Chen, J., Chen, Z., Li, G., Sun, G., & An, T. (2012). Treatment of organic waste gas in a paint plant by combined technique of biotrickling filtration with photocatalytic oxidation. Chemical Engineering Journal, 200-202, 645–653.

    Article  CAS  Google Scholar 

  • Kako, T., Nakajima, A., Watanabe, T., & Hashimoto, K. (2005). Comparison of photocatalytic properties of a batch reactor with those of a flow reactor in a nearly controlled mass transport region. Research on Chemical Intermediates, 31, 371–378.

    Article  CAS  Google Scholar 

  • Kataoka, S., Lee, E., Tejedor-Tejedor, M. I., & Anderson, M. A. (2005). Photocatalytic degradation of hydrogen sulfide and in situ FT-IR analysis of reaction products on surface of TiO2. Applied Catalysis B: Environmental, 61, 159–163.

    Article  CAS  Google Scholar 

  • Kato, S., Hirano, Y., Iwata, M., Sano, T., Takeuchi, K., & Matsuzawa, S. (2005). Photocatalytic degradation of gaseous sulfur compounds by silver-deposited titanium dioxide. Applied Catalysis B: Environmental, 57, 109–115.

    Article  CAS  Google Scholar 

  • Khataee, A. R., Amani-Ghadim, A. R., Rastegar Farajzade, M., & Ourang, O. V. (2011). Photocatalytic activity of nanostructured TiO2-modified white cement. Journal of Experimental Nanoscience, 6, 138–148.

    Article  CAS  Google Scholar 

  • Kumar, K. V., Porkodi, K., & Selvaganapathi, A. (2007). Constrain in solving Langmuir-Hinshelwood kinetic expression for the photocatalytic degradation of Auramine O aqueous solutions by ZnO catalyst. Dyes and Pigments, 75, 246–249.

    Article  CAS  Google Scholar 

  • Lafjah, M., Mayoufi, A., Schaal, E., Djafri, F., Bengueddach, A., Keller, N., & Keller, V. (2014). TiO2 nanorods for gas phase photocatalytic applications. Catalysis Today, 235, 193–200.

    Article  CAS  Google Scholar 

  • Lan, Y., Lu, Y., & Ren, Z. (2013). Mini review on photocatalysis of titanium dioxide nanoparticles and their solar applications. Nano Energy, 2, 1031–1045.

    Article  CAS  Google Scholar 

  • Langenhove, H. V., Demeestere, K., Dewulf, J., & Witte, B. (2005). Titanium dioxide mediated heterogeneous photocatalytic degradation of gaseous dimethyl sulfide: parameter study and reaction pathways. Applied Catalysis B: Environmental, 60, 93–106.

    Article  CAS  Google Scholar 

  • Laufs, S., Burgeth, G., Duttlinger, W., Kurtenbach, R., Maban, M., Thomas, C., Wiesen, P., & Kleffmann, J. (2010). Conversion of nitrogen oxides on commercial photocatalytic dispersion paints. Atmospheric Environment, 44, 2341–2349.

    Article  CAS  Google Scholar 

  • Loh, K., Gaylarde, C. C., & Shirakawa, M. A. (2018). Photocatalytic activity of ZnO and TiO2 ‘nanoparticles’ for use in cement mixes. Construction and Building Materials, 167, 853–859.

    Article  CAS  Google Scholar 

  • Lorencik, S., Yu, Q. L., & Brouwers, H. J. H. (2016). Photocatalytic coating for indoor air purification: synergetic effect of photocatalyst dosage and silica modification. Chemical Engineering Journal, 306, 942–952.

    Article  CAS  Google Scholar 

  • M’Braa, I. C., García-Muñoz, P., Drogui, P., Keller, N., Trokourey, A., & Robert, D. (2010). Heterogeneous photodegradation of Pyrimethanil and its commercial formulation with TiO2 immobilized on SiC foams. Journal of Photochemistry & Photobiology A: Chemistry, 368, 1–6.

    Article  CAS  Google Scholar 

  • Ma, Y., Chen, Z., & Gong, H. (2016). Study on selective hydrogen sulfide removal over carbon dioxide by catalytic oxidative absorption method with chelated iron as the catalyst. Renewable Energy, 96, 1119–1126.

    Article  CAS  Google Scholar 

  • Maggos, T., Bartzis, J. G., Liakou, M., & Gobin, C. (2007). Photocatalytic degradation of NOx gases using TiO2-containing paint: a real scale study. Journal of Hazardous Materials, 146, 668–673.

    Article  CAS  Google Scholar 

  • Mazierski, P., Nadolna, J., Lisowski, W., Michał, J., Winiarski, M. J., Gazda, M., Nischk, M., Klimczuk, T., & Zaleska-Medynska, A. (2017). Effect of irradiation intensity and initial pollutant concentration on gas phase photocatalytic activity of TiO2 nanotube arrays. Catalysis Today, 284, 19–26.

    Article  CAS  Google Scholar 

  • Mochizuki, T., Kubota, M., Matsuda, H., & Camacho, L. F. D. (2016). Adsorption behaviors of ammonia and hydrogen sulfide on activated carbon prepared from petroleum coke by KOH chemical activation. Fuel Processing Technology, 144, 164–169.

    Article  CAS  Google Scholar 

  • Mohamed, R. M., Ismail, A. A., Kadi, M. W., & Bahnemann, D. W. (2018). A comparative study on mesoporous and commercial TiO2 photocatalysts for photodegradation of organic pollutants. Journal of Photochemistry & Photobiology A: Chemistry, 367, 66–73.

    Article  CAS  Google Scholar 

  • Monteiro, R. A. R., Lopes, F. V. S., Silva, A. M. T., Ângelo, J., Silva, G. V., Mendes, A. M., Boaventura, R. A. R., & Vilar, V. J. P. (2014). Are TiO2-based exterior paints useful catalysts for gas-phase photooxidation processes? A case study on n-decane abatement for air detoxification. Applied Catalysis B: Environmental, 147, 988–999.

    Article  CAS  Google Scholar 

  • Nakata, K., & Fujishima, A. (2012). TiO2 photocatalysis: design and applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 13, 169–189.

    Article  CAS  Google Scholar 

  • Nishikawa, H., & Takahara, Y. (2001). Adsorption and photocatalytic decomposition of odor compounds containing sulfur using TiO2/SiO2 bead. Journal of Molecular Catalysis A: Chemical, 172, 247–251.

    Article  CAS  Google Scholar 

  • Nuño, M., Ball, R. J., & Bowen, C. R. (2016). Chapter 22: photocatalytic properties of commercially available TiO2 powders for pollution control. In: Semiconductor photocatalysis—materials, mechanisms and applications, 613–633.

  • Ochiai, T., & Fujishima, A. (2012). Photoelectrochemical properties of TiO2 photocatalyst and its applications for environmental purification. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 13, 247–262.

    Article  CAS  Google Scholar 

  • Oliveira, P. L., Araújo, D. S., Costa, A. C. F. M., & Oliveira, L. S. C. (2016). Analysis of x-ray diffraction of the titanium dioxide (TiO2) synthesized by the Pechini method for application in heterogeneous photocatalysis processes. 22° CBECiMat - Congresso Brasileiro de Engenharia e Ciência dos Materiais, 964–973.

  • Portela, R., Suárez, S., Rasmussen, S. B., Arconada, N., Castro, Y., Durán, A., Ávila, P., Coronado, J. M., & Sánchez, B. (2010). Photocatalytic-based strategies for H2S elimination. Catalysis Today, 151, 64–70.

    Article  CAS  Google Scholar 

  • Ramírez, M., Fernández, M., Granada, C., Borgne, S. L., Gómez, J. M., & Cantero, D. (2011). Biofiltration of reduced sulphur compounds and community analysis of sulphur-oxidizing bacteria. Bioresource Technology, 102, 4047–4053.

    Article  CAS  Google Scholar 

  • Rochetto, U. L., & Tomaz, E. (2015). Degradation of volatile organic compounds in the gas phase by heterogeneous photocatalysis with titanium dioxide/ultraviolet light. Journal of the Air & Waste Management Association, 65, 810–817.

    Article  CAS  Google Scholar 

  • Saleiro, G. T., Cardoso, S. L., Toledo, R., & Holanda, J. N. F. (2010). Avaliação das fases cristalinas de dióxido de titânio suportado em cerâmica vermelha. Cerâmica, 56, 162–167.

    Article  CAS  Google Scholar 

  • Sandeep, S., Nagashree, K. L., Maiyalagan, T., & Keerthiga, G. (2018). Photocatalytic degradation of 2,4-dichlorophenoxyacetic acid—a comparative study in hydrothermal TiO2 and commercial TiO2. Applied Surface Science, 449, 371–379.

    Article  CAS  Google Scholar 

  • Silva, A. L., Muche, D. N. F., Dey, S., Hotza, D., & Castro, R. H. R. (2016). Photocatalytic Nb2O5-doped TiO2 nanoparticles for glazed ceramic tiles. Ceramics International, 42, 5113–5122.

    Article  CAS  Google Scholar 

  • Sopyan, I. (2007). Kinetic analysis on photocatalytic degradation of gaseous acetaldehyde, ammonia and hydrogen sulfide on nanosized porous TiO2 films. Science and Technology of Advanced Materials, 8, 33–39.

    Article  CAS  Google Scholar 

  • Sousa, V. M., Manaia, C. M., Mendes, A., & Nunes, O. C. (2013). Photoinactivation of various antibiotic resistant strains of Escherichia coli using a paint coat. Journal of Photochemistry and Photobiology A: Chemistry, 251, 148–153.

    Article  CAS  Google Scholar 

  • Tennakone, K., Tilakaratne, C. T. K., & Kottegoda, I. R. M. (1997). Photomineralization of carbofuran by TiO2-supported catalyst. Water Research, 31, 1909–1912.

    Article  CAS  Google Scholar 

  • Tokode, O., Prabhu, R., Lawton, L. A., & Robertson, P. K. J. (2017). A photocatalytic impeller reactor for gas phase heterogeneous photocatalysis. Journal of Environmental Chemical Engineering, 5, 3942–3948.

    Article  CAS  Google Scholar 

  • Tryba, B., Homa, P., Wróbel, R. J., & Morawski, A. W. (2014). Photocatalytic decomposition of benzo-[a]-pyrene on the surface of acrylic, latex and mineral paints. Influence of paint composition. Journal of Photochemistry and Photobiology A: Chemistry, 286, 10–15.

    Article  CAS  Google Scholar 

  • Tsang, Y. F., Chua, H., Sin, S. N., & Chan, S. Y. (2008). Treatment of odorous volatile fatty acids using a biotrickling filter. Bioresource Technology, 99, 589–595.

    Article  CAS  Google Scholar 

  • Wang, L. Y., Wu, Y., Han, J. P., Zhang, B., Bai, X., Qi, Y. X., Lun, N., Cao, Y. M., & Bai, Y. J. (2017). Enhancing the electrochemical performance of commercial TiO2 by eliminating sulfate radicals and coating carbon. Electrochimica Acta, 245, 186–192.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Borges Lied.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lied, E.B., Morejon, C.F.M., de Oliveira Basso, R.L. et al. Photocatalytic Properties of Commercially Available TiO2: Study of Fotosan® and InterBrasil® FA-101 for H2S Degradation Using UV and Solar Radiation. Water Air Soil Pollut 231, 193 (2020). https://doi.org/10.1007/s11270-020-04560-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-020-04560-8

Keywords

Navigation