Skip to main content
Log in

Pathological Effects and Lethal Concentration of Two Nonionic, Tallowamine-Polyethoxylate Surfactants in White Cachama Piaractus brachypomus

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Two nonionic POEA surfactants (CAS No. 61791-26-2), TA15 and TH30, were tested to establish their acute pathological effects and lethal concentrations (LC50) in Piaractus brachypomus. Both compounds are nonionic surfactants produced by the alkoxylation of ethylene oxide with tallow amine, and they are used in variety of industries such as textiles, paints, metal working, agriculture, and polish manufacture. Fish were exposed to six concentrations of TA15 (0.2–4.0 mg/L) or TH30 (8–140 mg/L) for 96 h. The LC50 for TA15 was 2.08 mg/L and for TH30 47.32 mg/L. The main clinical signs observed in fish exposed to 4 mg/L of TA15 and 32 to 140 mg/L of TH30, were lethargy, loss of shoaling behavior, respiratory distress, changes in swimming pattern, such as, loss of balance and abnormal buoyancy, prolapse of the lower lip and superior location in the water column. The highest concentrations of these compounds induced nervous signs and collapse. The relevant macroscopic lesions were skin and fins erosions with necrotic lysis of the caudal peduncle. In addition, hemorrhages in mouth, branchial arches, and petechial hemorrhages in skin were observed. An increased fluid in the celomic cavity and meningeal hemorrhages were also evident. Organs as gills, liver, brain, and anterior kidney presented severe lesions at the highest concentrations of each compound. For the first time, it is reported lesions in interrenal tissues and choroidal bodies, as well as severe telencephalic lesions associated with the POEA toxicity. These last lesions were more severe in fish exposed to TA15 than to TH30, although the pattern of injuries was similar with both substances. According to the Global Harmonized System of Classification and Labelling of Chemical (GHS) by the United Nations, we reported that TA15 is classified as Acute Category 2 and TH30 is Acute Category 3 for white cachama. Due to the low LC50 and the highly toxic effects of both POEA compounds for neotropical fish, a revision of the regulation of the use of herbicide mixtures by Colombian legislation is necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Albañil Sánchez, J. A., da Costa Klosterhoff, M., Romano, L. A., & De Martinez Gaspar Martins, C. (2019). Histological evaluation of vital organs of the livebearer Jenynsia multidentata (Jenyns, 1842) exposed to glyphosate: A comparative analysis of Roundup® formulations. Chemosphere, 217, 914–924. https://doi.org/10.1016/j.chemosphere.2018.11.020.

    Article  CAS  Google Scholar 

  • Baccari, G. C., Pinelli, C., Santillo, A., Minucci, S., & Rastogi, R. K. (2011). Mast cells in nonmammalian vertebrates: an overview. International Review of Cell & Molecular Biology, 290, 1–53. https://doi.org/10.1016/B978-0-12-386037-8.00006-5.

    Article  CAS  Google Scholar 

  • Bernet, D., Schmidt, H., Meier, W., Burkhardt-Holm, P., & Wahli, T. (1999). Histopathology in fish: proposal for a protocol to assess aquatic pollution. Journal of Fish Diseases, 22(1), 25–34.

    Article  Google Scholar 

  • Brausch, J. M., & Smith, P. N. (2007). Toxicity of three polyethoxylated tallowamine surfactant formulations to laboratory and field collected fairy shrimp, Thamnocephalus platyurus. Archives of Environmental Contamination and Toxicology, 52(2), 217–221. https://doi.org/10.1007/s00244-006-0151-y.

    Article  CAS  Google Scholar 

  • Bridi, D., Altenhofen, S., Gonzalez, J. B., Reolon, G. K., & Bonan, C. D. (2017). Glyphosate and Roundup® alter morphology and behavior in zebrafish. Toxicology, 392, 32–39.

    Article  CAS  Google Scholar 

  • Budavari S (ed) (1989) The Merck Index: An encyclopedia of chemicals, drugs, and biologicals 11th ed. Merck & Co. Inc, Rahway, New Jersey.environmental health, Toxicol. Rep. 4 (2017) x–xi.

  • Burtler, A.B. (2011). Functional Morphology of the Brains of Ray-Finned Fishes. George Mason University, Fairfax, VA, USA ª Elsevier Inc.

  • Butler, A. B. (2000). Nervous system: Gross functional anatomy. In G. K. Ostrande (Ed.), Handbook of Laboratory Animals: Fish (pp. 129–149). San Diego: Academic Press.

    Chapter  Google Scholar 

  • Cerqueira, C., & Fernandes, M. N. (2002). Gill Tissue Recovery after Copper Exposure and Blood Parameter Responses in the Tropical Fish Prochilodus scrofa. Ecotoxicology and Environmental Safety, 52(2), 83–91.

    Article  CAS  Google Scholar 

  • da Cruz, C., Silvia, P. C., Shiogiri, N. S., da Silva, A. F., Pitelli, R. A., & Marcia, R. F. M. (2016). Sensitivity, ecotoxicity and histopathological effects on neotropical fish exposed to glyphosate alone and associated to surfactant. Journal of Environmental Chemistry and Ecotoxicology, 8(3), 25–33.

    Article  Google Scholar 

  • de Brito Rodrigues, L., Gonçalves Costa, G., Lundgren Thá, E., da Silva, L. R., de Oliveira, R., Morais Leme, D., Cestari, M. M., Koppe Grisolia, C., Campos Valadares, M., & de Oliveira, G. A. R. (2019). Impact of the glyphosate-based commercial herbicide, its components and its metabolite AMPA on non-target aquatic organisms. Mutation Research, Genetic Toxicology and Environmental Mutagenesis. https://doi.org/10.1016/j.mrgentox.2019.05.002.

    Article  CAS  Google Scholar 

  • Defarge, N., Takács, E., Lozano, V., Mesnage, R., de Vendômois, J. S., Séralini, G.-E., & Székács, A. (2016). Co-Formulants in Glyphosate-Based Herbicides Disrupt Aromatase Activity in Human Cells below Toxic Levels. International Journal of Environmental Research and Public Health, 13(3), 264.

    Article  Google Scholar 

  • Defarge, N., Spiroux de Vendomois, J., & Seralini, G. E. (2018). Toxicity of formulants and heavy metals in glyphosate-based herbicides and other pesticides. Toxicology Reports, 5, 156–163. https://doi.org/10.1016/j.toxrep.2017.12.025.

    Article  CAS  Google Scholar 

  • Dos Santos, A. P. R., Rocha, T. L., Borges, C. L., Bailão, A. M., de Almeida Soares, C. M., & de Sabóia-Morais, S. M. T. (2017). A glyphosate-based herbicide induces histomorphological and protein expression changes in the liver of the female guppy Poecilia reticulata. Chemosphere, 168, 933–943.

    Article  Google Scholar 

  • EFSA. (2015). Request for the evaluation of the toxicological assessment of the co-formulant POE-tallowamine. EFSA Journal, 13(11), 4303. https://doi.org/10.2903/j.efsa.2015.4303.

    Article  CAS  Google Scholar 

  • Folmar, L. C., Sanders, H. O., & Julin, A. M. (1979). Toxicity of the herbicide glyphosate and several of its formulations to fish and aquatic invertebrates. Archives of Environmental Contamination and Toxicology, 8(3), 269–278. https://doi.org/10.1007/bf01056243.

    Article  CAS  Google Scholar 

  • Gasnier, C., Dumont, C., Benachour, N., Clair, E., Chagnon, M., & Séralini, G. Glyphosate-based herbicides are toxic and endocrine disruptors in human cell lines. Toxicology, 262(2009), 184–191. https://doi.org/10.1016/j.tox.2009.06.006.

    Article  CAS  Google Scholar 

  • Georgieva, E. (2018). Glyphosate-based herbicide alters the histological structure of gills of two economically important cyprinid species (common carp, Cyprinus carpio and bighead carp, Aristichthys nobilis). Applied Ecology and Environmental Research, 16(3), 2295–2305. https://doi.org/10.15666/aeer/1603_22952305.

    Article  Google Scholar 

  • Glusczak, L., dos Santos Miron, D., Crestani, M., Braga da Fonseca, M., de Araujo Pedron, F., Duarte, M. F., & Vieira, V. L. (2006). Effect of glyphosate herbicide on acetylcholinesterase activity and metabolic and hematological parameters in piava (Leporinus obtusidens). Ecotoxicology and Environmental Safety, 65(2), 237–241. https://doi.org/10.1016/j.ecoenv.2005.07.017.

    Article  CAS  Google Scholar 

  • González, M. J., Landines, M. A., Borbón, J., Correal, M. L., Sánchez, C., & Rodríguez, L. (2014). Evaluación de algunos marcadores de exposición a contaminantes en tres especies de bagres colombianos (Pisces: Siluriformes). Biota Colombiana, 15(Supl. 1). https://doi.org/10.21068/bc.v15iSupl.1.341.

  • Hamilton, M. A., Russo, R. C., & Thurston, R. V. (1977). Trimmed Spearman-Karber method for estimating median lethal concentrations in toxicity bioassays. Environmental Science & Technology, 11(7), 714–719. https://doi.org/10.1021/es60130a004.

    Article  CAS  Google Scholar 

  • Hernandez, A. F., & Tsatsakis, A. M. (2017). Human exposure to chemical mixtures: Challenges for the integration of toxicology with epidemiology data in risk assessment. Food and Chemical Toxicology, 103, 188–193. https://doi.org/10.1016/j.fct.2017.03.012.

    Article  CAS  Google Scholar 

  • Hued, A. C., Oberhofer, S., & de los Angeles Bistoni, M. (2012). Exposure to a commercial glyphosate formulation (Roundup(R)) alters normal gill and liver histology and affects male sexual activity of Jenynsia multidentata (Anablepidae, Cyprinodontiformes). Archives of Environmental Contamination and Toxicology, 62(1), 107–117. https://doi.org/10.1007/s00244-011-9686-7.

    Article  CAS  Google Scholar 

  • IARC (2015) Monographs, volume 112: some organophosphate insecticides and herbicides: tetrachlorvinphos, parathion, malathion, diazinon and glyphosate. Iarc working group. Lyon; 3–10 march 2015. Iarc monogr eval carcinog risk chem hum

  • Jiraungkoorskul, W., Upatham, E. S., Kruatrachue, M., Sahaphong, S., Vichasri-Grams, S., & Pokethitiyook, P. (2003). Biochemical and histopathological effects of glyphosate herbicide on Nile tilapia (Oreochromis niloticus). Environmental Toxicology, 18(4), 260–267. https://doi.org/10.1002/tox.10123.

    Article  CAS  Google Scholar 

  • Kreutz, L. C., Barcellos, L. J. G., Silva TO, Anziliero, D., Martins, D., Lorenson, M., Marteninghe, A., & Silva, L. B. (2008). Acute toxicity test of agricultural pesticides on silver catfish (Rhamdia quelen) fingerlings. Ciência Rural, 38, 1050–1055.

    Article  CAS  Google Scholar 

  • Langiano Vdo, C., & Martinez, C. B. (2008). Toxicity and effects of a glyphosate-based herbicide on the Neotropical fish Prochilodus lineatus. Comparative Biochemistry and Physiology, Part C: Toxicology & Pharmacology, 147(2), 222–231. https://doi.org/10.1016/j.cbpc.2007.09.009.

    Article  CAS  Google Scholar 

  • Lewis, M. A. (1991). Chronic and sublethal toxicities of surfactants to aquatic animals: A review and risk assessment. Water Research, 25(1), 101–113. https://doi.org/10.1016/0043-1354(91)90105-Y.

    Article  CAS  Google Scholar 

  • Lise-Lott, U., Lindgren, Å., Sjöström, M., & Wold, S. (2000). Multivariate quantitative structure-activity relationships for the aquatic toxicity of technical nonionic surfactants. Journal of Surfactants and Detergents, 3(1), 33–41.

    Article  Google Scholar 

  • Mesnage, R., Bernay, B., & Seralini, G. E. (2013). Ethoxylated adjuvants of glyphosate-based herbicides are active principles of human cell toxicity. Toxicology, 313(2-3), 122–128. https://doi.org/10.1016/j.tox.2012.09.006.

    Article  CAS  Google Scholar 

  • Mesnage, R., Benbrook, C., & Antoniou, M. N. (2019). Insight into the confusion over surfactant co-formulants in glyphosate-based herbicides. Food and Chemical Toxicology, 128, 137–145.

    Article  CAS  Google Scholar 

  • Nations. U (2011) Globally Harmonized System of Classification and Labelling of Chemicals (GHS)

  • Navarro, C. D. C., & Martinez, C. B. R. (2014). Effects of the surfactant polyoxyethylene amine (POEA) on genotoxic, biochemical and physiological parameters of the freshwater teleost Prochilodus lineatus. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 165, 83–90. https://doi.org/10.1016/j.cbpc.2014.06.003.

    Article  CAS  Google Scholar 

  • Nobels, I., Spanoghe, P., Haesaert, G., Robbens, J., Blust, R., & Lin, B. (2011). Toxicity Ranking and Toxic Mode of Action Evaluation of Commonly Used Agricultural Adjuvants on the Basis of Bacterial Gene Expression Profiles. PLoS ONE, 6(11), e24139.

    Article  CAS  Google Scholar 

  • Padilla, J. T., & Selim, H. M. (2019). Environmental behavior of glyphosate in soils Advances in Agronomy. Cambridge: Academic Press.

    Google Scholar 

  • Pérez, G. L. V. M. S. M. L. (2011). Effects of herbicide glyphosate and glyphosate-based formulations on aquatic ecosystems, Herbicides and Environmen. London: IntechOpen.

    Google Scholar 

  • Ramírez-Duarte, W. F., Rondón-Barragán, I. S., & Eslava-Mocha, P. R. (2008). Acute toxicity and histopathological alterations of Roundup® herbicide on "cachama blanca" (Piaractus brachypomus). Pesquisa Veterinaria Brasileira, 28, 547–554.

    Article  Google Scholar 

  • Rendon-von Osten, J., Ortiz-Arana, A., Guilhermino, L., & Soares, A. M. (2005). In vivo evaluation of three biomarkers in the mosquitofish (Gambusia yucatana) exposed to pesticides. Chemosphere, 58(5), 627–636. https://doi.org/10.1016/j.chemosphere.2004.08.065.

    Article  CAS  Google Scholar 

  • Rodriguez-Gil, L., Prosser, R., Poirier, D., Lissemore, L., Thompson, D., Hanson, M., & Solomon, K. R. (2017). Aquatic hazard assessment of MON 0818, a commercial mixture of alkylamine ethoxylates commonly used in glyphosate-containing herbicide for-mulations. Part 1: species sensitivity distribution from aboratory acute exposures. Environ. Toxicol. Chem., 36, 501–511. https://doi.org/10.1002/etc.

    Article  CAS  Google Scholar 

  • Rondón-Barragán, I. S., Ramírez-Duarte, W. F., & Eslava-Mocha, P. R. (2007). Evaluación de los efectos tóxicos y concentración letal 50 del surfactante Cosmoflux® 411F sobre juveniles de cachama blanca (Piaractus brachypomus). Revista Colombiana de Ciencias Pecuarias, 20(4), 431–446.

    Google Scholar 

  • Schoberl, P., Bock, K. J., & Huber, L. (1989). Umweltrelevante Daten von Tensiden in Wasch- und Reinigungsmitteln. Tenside Surfact Deterg, 25, 86–98.

    Google Scholar 

  • Shiogiri, N. S., Paulino, M. G., Carraschi, S. P., Baraldi, F. G., da Cruz, C., & Fernandes, M. N. (2012). Acute exposure of a glyphosate-based herbicide affects the gills and liver of the Neotropical fish, Piaractus mesopotamicus. Environmental Toxicology and Pharmacology, 34(2), 388–396. https://doi.org/10.1016/j.etap.2012.05.007.

    Article  CAS  Google Scholar 

  • Sinhorin, V. D., Sinhorin, A. P., Teixeira, J. M., Mileski, K. M., Hansen, P. C., Moreira, P. S., Kawashita, N. H., Baviera, A. M., & Loro, V. L. (2014). Effects of the acute exposition to glyphosate-based herbicide on oxidative stress parameters and antioxidant responses in a hybrid Amazon fish surubim (Pseudoplatystoma sp). Ecotoxicology and Environmental Safety, 106, 181–187. https://doi.org/10.1016/j.ecoenv.2014.04.040.

    Article  CAS  Google Scholar 

  • Székács, I., Fejes, Á., Klátyik, S., Takács, E., Patko, D., Pomothy, J., Mörtl, M., Horvath, R., Madarász, E., Darvas, B., & Szekacs, A. (2014). Environmental and toxicological impacts of glyphosate with its formulating adjuvant. World Academy of Science, Engineering and Technology. International Journal of Biological, Veterinary. Agricultural and Food Engineering, 8, 207–212.

    Google Scholar 

  • Tóth, G., Háhn, J., Kriszt, B., & Szoboszlay, S. (2019). Acute and chronic toxicity of herbicides and their mixtures measured by Aliivibrio fischeri ecotoxicological assay. Ecotoxicology and Environmental Safety, 185, 109702. https://doi.org/10.1016/j.ecoenv.2019.109702.

    Article  CAS  Google Scholar 

  • Tsui, M. T. K., & Chu, L. M. (2003). Aquatic toxicity of glyphosate-based formulations: comparison between different organisms and the effects of environmental factors. Chemosphere, 52(7), 1189–1197. https://doi.org/10.1016/S0045-6535(03)00306-0.

    Article  CAS  Google Scholar 

  • Tush, D., Loftin, K. A., & Meyer, M. T. (2013). Characterization of polyoxyethylene tallow amine surfactants in technical mixtures and glyphosate formulations using ultra-high performance liquid chromatography and triple quadrupole mass spectrometry. Journal of Chromatography. A, 1319, 80–87. https://doi.org/10.1016/j.chroma.2013.10.032.

    Article  CAS  Google Scholar 

  • Uppgård, L-L., Lindgren, Å., Sjöström, M., & Wold, S. (2000). Multivariate quantitative structure-activity relationships for the aquatic toxicity of technical nonionic surfactants. Journal of Surfactants and Detergents, 3(1), 33–41.

  • Wan, M. T., Watts, R. G., & Moul, D. J. (1989). Effects of different dilution water types on the acute toxicity to juvenile Pacific salmonids and rainbow trout of glyphosate and its formulated products. Bulletin of Environmental Contamination and Toxicology, 43(3), 378–385.

    Article  CAS  Google Scholar 

  • Wolf, J. C., Baumgartner, W. A., Blazer, V. S., Camus, A. C., Engelhardt, J. A., Fournie, J. W., Frasca Jr., S., Groman, D. B., Kent, M. L., Khoo, L. H., Law, J. M., Lombardini, E. D., Ruehl-Fehlert, C., Segner, H. E., Smith, S. A., Spitsbergen, J. M., Weber, K., & Wolfe, M. J. (2015). Nonlesions, misdiagnoses, missed diagnoses, and other interpretive challenges in fish histopathology studies: a guide for investigators, authors, reviewers, and readers. Toxicologic Pathology, 43(3), 297–325. https://doi.org/10.1177/0192623314540229.

    Article  Google Scholar 

  • Yanong, R. P. E. (2003). Necropsy techniques for fish. Seminars in Avian and Exotic Pet Medicine, 12(2), 89–105. https://doi.org/10.1053/saep.2003.127885.

    Article  Google Scholar 

  • Zebral, Y. D., Costa, P. G., de Castro, K. B., Lansini, L. R., Zafalon-Silva, B., Bianchini, A., & Robaldo, R. B. (2017). Effects of a glyphosate-based herbicide in pejerrey Odontesthes humensis embryonic development. Chemosphere, 185, 860–867. https://doi.org/10.1016/j.chemosphere.2017.07.069.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the General Directorate of Research of the Unillanos for the sponsorship of the research project associated with the Doctorate in Agrarian Sciences and to the officials and technical staff of IALL, also to the CORPVET Veterinary Pathology Corporation of Bogotá, Colombia. B. Baldisserotto was a recipient of a Conselho Nacional de Desenvolvimento Tecnológico (CNPq – Brazil) research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro René Eslava-Mocha.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Table 4 Significant lesions (in italics) gills of Piaractus brachypomus exposed to POEA-TA15-96 h
Table 5 Significant lesions (in italics) gills of Piaractus brachypomus exposed to TH30 for 96 h
Table 6 Lesiones de la PIEL-POEA-TA15-96 h
Table 7 Injuries in liver POEA/TA15-96 h
Table 8 Lesions in telencefalo TA15-POEA-96 h
Table 9 Lesiones en telencefalo TA15-POEA-96 h
Table 10 Diencefalo TA15-POEA injuries-96 h
Table 11 Cranial kidney injury: POEA-TA15-96 h
Table 12 Kidney injury POEA-TA15-96 h
Table 13 Skin injuries CL50-TH30-96 h
Table 14 Injuries in liver POEA-TH30-96 h
Table 15 Lesions in telencefalo TH30-POEA-96 h
Table 16 Diencefalo POEA-TH30 injuries-96 h
Table 17 Cranial kidney injury: POEA-TH30-96 h
Table 18 Kidney injury POEA-TH30-96 h

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eslava-Mocha, P.R., Vargas-Pulido, A.L., León-Pinzón, A.L. et al. Pathological Effects and Lethal Concentration of Two Nonionic, Tallowamine-Polyethoxylate Surfactants in White Cachama Piaractus brachypomus. Water Air Soil Pollut 230, 286 (2019). https://doi.org/10.1007/s11270-019-4340-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-019-4340-5

Keywords

Navigation