Skip to main content
Log in

Gold Mine Impact on Soil Quality, Youga, Southern Burkina Faso, West Africa

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The present study aims to assess the impact of a gold mine located in the southeastern part of Burkina Faso on local soil quality. This information is needed in order to determine any health hazards and potential remediation strategies as the mining site is expected to be turned over to the local community after the closure of the mine. For the purpose, total minor and trace elements analysis as well as a sequential extraction were performed and results were interpreted using different methodologies: enrichment factor (EF), geoaccumulation index (Igeo) computed using two separate background samples, and comparison to selected national standard. The soil analysis revealed a moderate to significant soil EF and Igeo with hotspots located closer to the ore processing plant and on the east side of the site, with a maximum arsenic concentration of 286.55 ± 12.50 mg/kg. Sequential extraction revealed, however, that less than 2% of the arsenic is found in the exchangeable part. Cobalt and zinc are more distributed in the different fractions than arsenic. Geogenic and anthropogenic contributions were revealed by the study.

.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdul-Wadood, M., & Ashraf, D. (2015). Investigating potential mining induced water stress in Ghana’s north-west gold province. The Extractive Industries and Society. https://doi.org/10.1016/j.exis.2016.04.002.

    Article  Google Scholar 

  • Arenas-Lago, D., Andrade, M. L., Lago-Vila, M., Rodríguez-Seijo, A., & Vega, F. A. (2014). Sequential extraction of heavy metals in soils from a copper mine: distribution in geochemical fractions. Geoderma, 230–231, 108–118. https://doi.org/10.1016/j.geoderma.2014.04.011.

    Article  CAS  Google Scholar 

  • Ashraf, S., Ali, Q., Zahir, A. Z., Ashraf, S., & Asghar, N. H. (2019). Phytoremediation: environmentally sustainable way for reclamation of heavy metal polluted soils. Ecotoxicology and Environmental Safety, 174, 714–727. https://doi.org/10.1016/j.ecoenv.2019.02.068.

    Article  CAS  Google Scholar 

  • Barbieri, M., Nigro, A., & Sappa, G. (2015). Soil contamination by enrichment factor (EF) and geoaccumulation index (Igeo). Senses & Sciences, 2(3), 94–97. https://doi.org/10.14616/sands-2015-3-9497.

    Article  Google Scholar 

  • Barbieri, M., Sappa, G., & Nigro, A. (2018). Soil pollution: anthropogenic versus geogenic contributions over larges areas of the Lazio region. Journal of Geochemical Exploration, 195, 78–86. https://doi.org/10.1016/j.gexplo.2017.11.014.

    Article  CAS  Google Scholar 

  • Bettinelli, M., Beone, G. M., Spezia, S., & Baffi, C. (2000). Determination of heavy metals in soils and sediments by microwave-assisted digestion and inductively coupled plasma optical emission spectrometry analysis. Analytica Chimica Acta, 424, 289–296. https://doi.org/10.1016/S0003-2670(00)01123-5.

    Article  CAS  Google Scholar 

  • Bogusz, A., & Oleszczuk, P. (2018). Sequential extraction of nickel and zinc in sewage sludge- or biochar/sewage sludge-amended soil. Science of the Total Environment, 636, 927–935. https://doi.org/10.1016/j.scitotenv.2018.04.072.

    Article  CAS  Google Scholar 

  • CCME. (2007). Canadian soil quality guidelines for the protection of environmental and human health: CCME Soil Quality Index 1.0. Canadian Environmental Quality Guidelines 1999. Winnipeg, Canada. Retrieved on www.ccme.ca.

  • Chambre des Mines du Burkina. (2018). Revue annuelle de la chambre des mines du Burkina. Edition 2018. http://www.chambredesmines.bf. Accessed 22 Feb 2019.

  • Cheng, S., Liu, G., Zhou, C., & Sun, R. (2018). Chemical speciation and risk assessment of cadmium in soils around a typical coal mining area of China. Ecotoxicology and Environmental Safety, 160, 67–74. https://doi.org/10.1016/j.ecoenv.2018.05.022.

    Article  CAS  Google Scholar 

  • Cott, A. P., Zajdlik, A. B., Palmer, J. M., & McPherson, D. M. (2016). Arsenic and mercury in lake whitefish and burbot near the abandoned Giant Mine on Great Slave Lake. Journal of Great Lakes Research, 223–232. https://doi.org/10.1016/j.jglr.2015.11.004.

    Article  CAS  Google Scholar 

  • Cuvier, A., Pourcelot, L., Probst, A., Prunier, J., & Le Roux, G. (2016). Trace elements and Pb isotopes in soils and sediments impacted by uranium mining. Science of the Total Environment, 566-567, 238–249. https://doi.org/10.1016/j.scitotenv.2016.04.213.

    Article  CAS  Google Scholar 

  • Dorau, K. (2017). Monitoring of reducing conditions in soils and implications for biogeochemical processes. Doctoral Thesis, Mathematisch-Naturwissenschaftlichen Fakultät der Universität zu Köln, Germany, pp 160.

  • Etruscan resources Inc. (2005). Youga gold project, updated environmental impact statement. SGS Environment. Project N° B321.

  • Fernandez, E., Jiménez, R., Lallena, A. M., & Aguilar, J. (2004). Evaluation of the BCR sequential extraction procedure applied for two unpolluted Spanish soils. Environmental Pollution, 131, 355–364. https://doi.org/10.1016/j.envpol.2004.03.013.

    Article  CAS  Google Scholar 

  • Fernández-Ondoño, E., Bacchetta, G., Lallena, M. A., Navarro, B. F., Ortiz, I., & Jiménez, M. N. (2017). Use of BCR sequential extraction procedures for soils and plant metal transfer predictions in contaminated mine tailings in Sardinia. Journal of Geochemical Exploration, 172, 133–141. https://doi.org/10.1016/j.gexplo.2016.09.013.

    Article  CAS  Google Scholar 

  • Hansen, N. R. (2015). Contaminant leaching from gold mining tailings dams in the Witwatersrand Basin, South Africa: a new geochemical modelling approach. Applied Geochemistry, 61, 217–223. https://doi.org/10.1016/j.apgeochem.2015.06.001.

    Article  CAS  Google Scholar 

  • Hasan, M., Kausar, D., Akhter, G., & Shah, H. M. (2018). Evaluation of the mobility and pollution index of selected essential/toxic metals in paddy soil by sequential extraction method. Ecotoxicology and Environmental Safety, 147, 283–291. https://doi.org/10.1016/j.ecoenv.2017.08.054.

    Article  CAS  Google Scholar 

  • Heiri, O., Lotter, F. A., & Lemck, G. (2001). Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. Journal of Paleolimnology, 101–110.

  • Hilson, G. (2002). An overview of land use conflicts in mining communities. Land Use Policy, 19, 65–73.

    Article  Google Scholar 

  • Hilson, G. (2016). Farming, small-scale mining and rural livelihoods in sub-Saharan Africa: a critical overview. The Extractive Industries and Society, 3, 547–563. https://doi.org/10.1016/j.exis.2016.02.003.

    Article  Google Scholar 

  • Isaac, A., & Ololade, I. (2014). An assessment of heavy-metal contamination in soils within auto-mechanic workshops using enrichment and contamination factors with geoaccumulation indexes. Journal of Environmental Protection, 5, 970–982. https://doi.org/10.4236/jep.2014.511098.

    Article  CAS  Google Scholar 

  • Islam, S., Ahmed, K., Habibullah-Al-Mamun, M., & Islam, A. S. (2017). Sources and ecological risk of heavy metals in soils of different land uses in Bangladesh. Pedosphere. https://doi.org/10.1016/S1002-0160(17)60394-1.

  • Khaledian, Y., Brevik, C. E., Pereira, P., Cerdà, A., Fattah, A. M., & Tazikeh, H. (2017). Modeling soil cation exchange capacity in multiple countries. Catena, 158, 194–200. https://doi.org/10.1016/j.catena.2017.07.002.

    Article  CAS  Google Scholar 

  • Khaska, M., Le Gal La Salle, C., Verdoux, P., & Boutin, R. (2015). Tracking natural and anthropogenic origins of dissolved arsenic during surface and groundwater interaction in a post-closure mining context: isotopic constraints. Journal of Contaminant Hydrology, 122–135. https://doi.org/10.1016/j.jconhyd.2015.03.008.

    Article  CAS  Google Scholar 

  • Kinimo, C. K., Yao, K. M., Marcotte, S., Kouassi, L. B. N., & Trokourey, A. (2018). Distribution trends and ecological risks of arsenic and trace metals in wetland sediments around gold mining activities in central-southern and southeastern Côte d’Ivoire. Journal of Geochemical Exploration, 190, 265–280. https://doi.org/10.1016/j.gexplo.2018.03.013.

    Article  CAS  Google Scholar 

  • Klubi, E., Abril, M. J., Nyarko, E., & Delgado, A. (2018). Impact of gold-mining activity on trace elements enrichment in the West African estuaries: the case of Pra and Ankobra rivers with the Volta estuary (Ghana) as the reference. Journal of Geochemical Exploration, 19, 229–244. https://doi.org/10.1016/j.gexplo.2018.03.014.

    Article  CAS  Google Scholar 

  • Kříbek, B., De Vivo, B., & Davies, T. (2014). Preface special issue: impacts of mining and mineral processing on the environment and human health in Africa. Journal of Geochemical Exploration, 144, 387–390. https://doi.org/10.1016/j.gexplo.2014.07.018.

    Article  CAS  Google Scholar 

  • Lin, W., Wu, K., Lao, Z., Hu, W., Lin, B., Li, Y., Fan, H., & Hu, J. (2019). Assessment of trace metal contamination and ecological risk in the forest ecosystem of dexing mining area in northeast Jiangxi Province, China. Ecotoxicology and Environmental Safety, 167, 76–82. https://doi.org/10.1016/j.ecoenv.2018.10.001.

    Article  CAS  Google Scholar 

  • Liu, H., Probst, A., & Liao, B. (2005). Metal contamination of soils and crops affected by the Chenzhou lead/zinc mine spill (Hunan, China). Science of the Total Environment, 339, 153–166.

    Article  CAS  Google Scholar 

  • Liu, L., Li, W., Song, W., & Guo, M. (2018). Remediation techniques for heavy metal-contaminated soils: principles and applicability. Science of the Total Environment, 633, 206–219. https://doi.org/10.1016/j.scitotenv.2018.03.161.

    Article  CAS  Google Scholar 

  • Melaku, S., Dams, R., & Moens, L. (2005). Determination of trace elements in agricultural soil samples by inductively coupled plasma-mass spectrometry: microwave acid digestion versus aqua regia extraction. Analytica Chimica Acta, 543, 117–123. https://doi.org/10.1016/j.aca.2005.04.055.

    Article  CAS  Google Scholar 

  • Mileusnić, M., Mapani, S. B., Kamona, F. A., Ružičić, S., Mapaure, I., & Chimwamurombe, M. P. (2014). Assessment of agricultural soil contamination by potentially toxic metals dispersed from improperly disposed tailings, Kombat mine, Namibia. Journal of Geochemical Exploration, 144, 409–420. https://doi.org/10.1016/j.gexplo.2014.01.009.

    Article  CAS  Google Scholar 

  • Ngure, V., Davies, T., Kinuthia, G., Sitati, N., Shisia, S., & Oyoo-Okoth, E. (2014). Concentration levels of potentially harmful elements from gold mining in Lake Victoria Region, Kenya: environmental and health implications. Journal of Geochemical Exploration, 144, 511–516. https://doi.org/10.1016/j.gexplo.2014.04.004.

    Article  CAS  Google Scholar 

  • Nowrouzi, M., & Pourkhabbaz, A. (2014). Application of geoaccumulation index and enrichment factor for assessing metal contamination in the sediment of Hara Biosphere Reserve, Iran. Chemical Speciation & Bioavailability, 26(2), 99–105. https://doi.org/10.3184/095422914X13951584546986.

    Article  CAS  Google Scholar 

  • Ouadjenia-Marouf, F., Marouf, R., Schott, J., & Yahiaoui, A. (2013). Removal of Cu(II), Cd(II) and Cr(III) ions from aqueous solution by dam silt. Arabian Journal of Chemistry, 6, 401–406. https://doi.org/10.1016/j.arabjc.2010.10.018.

    Article  CAS  Google Scholar 

  • Rauret, G., López-Sánchez, J. F., Sahuquiuo, A., Muntau, H., & Queva, P. (2000). Addendum to EUR-Report 17554 EN: indicative values for extractable contents (mass fractions) of Cd, Cr, Cu, Ni, Pb and Zn in sediment (CRM 601) following the modified BCR-sequential extraction (three-step) procedure. European Commission, BCR information series. Luxembourg: Office for Official Publications of the European Communities.

  • Ross, S. D., & Ketterings, Q. (2011). Recommended methods for determining soil cation exchange capacity. Chap 9 of Recommended soil testing procedures for the Northeastern United States, pp. 75-85. Univ. of Del, Newark, DE. Bull. No 493.

  • Sako, A., Semdé, S., & Wenmenga, U. (2018). Geochemical evaluation of soil, surface water and groundwater around the Tongon gold mining area, northern Côte d’Ivoire, West Africa. Journal of African Earth Sciences, 145, 297–316. https://doi.org/10.1016/j.jafrearsci.2018.05.016.

    Article  CAS  Google Scholar 

  • Stewart, M. A., Jardine, P. M., Barnett, M. O., Mehlhorn, T. L., Hyder, L. K., & McKay, L. D. (2003). Influence of soil geochemical and physical properties on the sorption and bioaccessibility of chromium(III). Journal of Environmental Quality, 32, 129–137.

    Article  CAS  Google Scholar 

  • Vareda, P. J., Valente, A. J. M., & Durães, L. (2019). Assessment of heavy metal pollution from anthropogenic activities and remediation strategies: a review. Journal of Environmental Management, 246, 101–118. https://doi.org/10.1016/j.jenvman.2019.05.126.

    Article  CAS  Google Scholar 

  • Wali, A., Colinet, G., & Ksibi, M. (2014). Speciation of heavy metals by modified BCR sequential extraction in soils contaminated by phosphogypsum in Sfax, Tunisia. Environmental Research, Engineering and Management, 70(4), 14–26. https://doi.org/10.5755/j01.erem.70.4.7807.

    Article  Google Scholar 

  • Woodman, K. K., Baratoux, L., Somda, A., & Siebenaller, L. (2016). The Youga gold deposit, Burkina Faso. Ore Geology Reviews, 78, 631–638. https://doi.org/10.1016/j.oregeorev.2015.11.015.

    Article  Google Scholar 

  • Wu, Y., Xu, Y., Zhang, J., & Hu, S. (2010). Evaluation of ecological risk and primary empirical research on heavy metals in polluted soil over Xiaoqinling gold mining region, Shaanxi, China. Transactions of Nonferrous Metals Society of China, 20(4), 688–694. https://doi.org/10.1016/S1003-6326(09)60199-0.

    Article  CAS  Google Scholar 

  • Xu, Y., Liang, X. F., Xu, Y. M., Qin, X., Huang, Q. Q., Wang, L., & Sun, Y. B. (2017). Remediation of heavy metal-polluted agricultural soils using clay minerals: a review. Pedosphere., 27(2), 193–204.

    Article  Google Scholar 

  • Zhang, H., Chen, J., Zhu, L., Yang, G., & Li, D. (2014). Anthropogenic mercury enrichment factors and contributions in soils of Guangdong Province, South China. Journal of Geochemical Exploration, 144, 312–319. https://doi.org/10.1016/j.gexplo.2014.01.031.

    Article  CAS  Google Scholar 

  • Zhou, Z., Chen, Z., Pan, H., Sun, B., Zeng, D., He, L., Yang, R., & Zhou, G. (2018). Cadmium contamination in soils and crops in four mining areas, China. Journal of Geochemical Exploration, 192, 72–84. https://doi.org/10.1016/j.gexplo.2018.06.003.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

A word of thanks is given to the Health Safety and Environment Officers for helping with the on-field activities. The authors thank the Burkina Mining Company for authorizing this study.

Funding

The first author received scholarship for the doctoral studies number 600026671 from the Islamic Development Bank.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wendkuuni Florentin Compaore.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Gold mine site soils were sampled for minor and trace element analysis.

• Enrichment factors reveal anthropogenic contribution to soil contaminants.

• Geoaccumulation index calculation confirmed soil contamination.

• Sequential extraction exhibited a substantial share in the mobilizable fraction.

• Minor and trace elements in soils were impacted by both anthropogenic and geogenic sources.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Compaore, W.F., Dumoulin, A. & Rousseau, D.P.L. Gold Mine Impact on Soil Quality, Youga, Southern Burkina Faso, West Africa. Water Air Soil Pollut 230, 207 (2019). https://doi.org/10.1007/s11270-019-4257-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-019-4257-z

Keywords

Navigation