Skip to main content
Log in

Permeability and Retention to Water and Leachate of a Compacted Soil Used as Liner

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

In many developing countries, a landfill remains one of the most extensively employed solid waste disposal solutions. Although a landfill is a well-designed engineering system, the base lining of a landfill may perform poorly and allow the leachate to reach the underlying soil layers and groundwater. Leachates contain a variety of toxic and hazardous contaminants, which are attenuated in the soil by various processes that slow or transform them. Thus, the objective of this research was to study the water and leachate permeability and retention of the liner soil in a landfill experimental cell by subjecting it to geotechnical, chemical-mineralogical, and physicochemical characterizations, water and leachate permeability tests, and mercury intrusion porosimetry (MIP). In addition, the water and leachate retention curves were determined and analyzed using RETention Curve (RETC) software to obtain the unsaturated permeability curves. The leachate in the soil decreased the suction considering the moisture content of the compacted soil in the field, which consequently increased the leachate permeability of the mineral liner. For the same suction value, in the drying pathways, the soil retained a greater amount of distilled water than leachate. In the wetting pathways, the opposite occurred. Microorganisms were detected in the soil during the filter paper test. The permeability coefficients of the unsaturated soil were directly proportional to the gravimetric moisture content for the water and the leachate, which demonstrated that the soil presents lower unsaturated permeability coefficients for water than for leachate for the same water content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • ABRELPE (2014). Panorama de resíduos sólidos urbanos. Associação Brasileira de Empresas de Limpeza Pública e Resíduos Especiais. http://www.abrelpe.org.br/panorama_apresentacao.com Accessed 10 February 2016 (in Portuguese).

  • Alimi-Ichola, I., & Gaidi, L. (2006). Influence of the unsaturated zone of soil layer on the solute migration. Engineering Geology, 85, 2–8.

    Article  Google Scholar 

  • Al-Khafaf, S., & Hanks, R. J. (1974). Evaluation of the filter paper method for estimating soil water potential. Soil Science, 117(4), 194–199.

    Article  Google Scholar 

  • APHA, AWWA, & WPCF. (1998). Standard methods for the examination of water and wastewater (20th ed.). Washington, DC: Americam Public Health Association.

    Google Scholar 

  • Appel, C., Mab, L. Q., Rhue, D., & Kennelley, E. (2003). Point of zero charge determination in soils and minerals via traditional methods and detection of electroacoustic mobility. Geoderma, 113, 77–93.

    Article  CAS  Google Scholar 

  • ASTM D 2487. (2011). Standard practice for classification of soils for engineering purposes (Unified Soil Classification System). American Society for Testing and Materials, West Conshohocken.

  • ASTM D 422-63. (2007). Standard test method for particle-size analysis of soils. West Conshohocken: American Society for Testing and Materials.

    Google Scholar 

  • ASTM D 4318-10. (2010). Standard test method for liquid limit, plastic limit and plasticity index of soils. West Conshohocken: American Society for Testing and Materials.

    Google Scholar 

  • ASTM D 5298. (2003). Standard test method for measurement of soil potential (suction) using filter paper. West Conshohocken: American Society for Testing and Materials.

    Google Scholar 

  • ASTM D 5856-15. (2015). Standard test method for measurement of hydraulic conductivity of porous material using a rigid-wall, compaction-mold permeameter. West Conshohocken: American Society for Testing and Materials.

    Google Scholar 

  • ASTM D 698-12. (2012). Standard test methods for laboratory compaction characteristics of soil using standard effort (12 400 ft-lbf/ft3 (600 kN-m/m3). American Society for Testing and Materials, West Conshohocken, Pa.

  • ASTM D 854–14. (2014). Standard test methods for specific gravity of soil solids by water pycnometer. West Conshohocken: American Society for Testing and Materials.

    Google Scholar 

  • Badv, K., & Omidi, A. (2007). Effect of synthetic leachate on the hydraulic conductivity of clayey soil in Urmia city landfill site. Iranian Journal of Science and Technology, Transaction B, Engineering, 31(5), 535–545.

    CAS  Google Scholar 

  • Bear, J. (1979). Hydraulics of groundwater. New York: McGraw-Hill.

    Google Scholar 

  • Benatti, J. C. B., Paixão Filho, J. L., Leme, M. A. G., & Miguel, M. G. (2013). Construction of a large-scale experimental cell to obtain hydro-geomechanical parameters of MSW of the city of Campinas, Brazil, 09/2013, In: XIV International Waste Management and Landfill Symposium, 1, pp. 1–13, Cagliari, Italian.

  • Bicalho, K. V., Marinho, F. A. M., Fleureau, J-M., Correia, A. G., & Ferreira, S. (2009). Evaluation of filter paper calibrations for indirect determination of soil suctions of an unsaturated compacted silty sand. In: 17th International Conference on Soil Mechanics and Geotechnical Engineering, 2009, Alexandria. 17th International Conference on Soil Mechanics and Geotechnical Engineering. Amsterdam: IOS Press, 1, pp. 777–780.

  • Bonder, B. H., & Miguel, M. G. (2011a). Soil-water characteristic curves obtained through the wetting paths for a tropical soil profile. In: Fifth International Conference on Unsaturated Soils, 2011, Barcelona. Unsaturated Soils, London: Taylor & Francis Group, 2011, 1, pp. 441–446.

  • Bonder, B. H., & Miguel, M. G. (2011b). Hysteresis phenomenon of a tropical soil profile observed by means of soil water characteristic curves obtained in laboratory and field. In: 14th Pan-American Conference on Soil Mechanics and Geotechnical Engineering and 64th Canadian Geotechnical Conference, 1, Toronto-Canada.

  • Bulut, R., & Leong, E.-C. (2008). Indirect measurement of suction. Geotechnical and Geological Engineering, 26, 633–644.

    Article  Google Scholar 

  • Burckhard, S. R., Pirkl, D., Schaefer, V. R., Kulakow, P., & Leven, B. (2000). A study of soil water-holding properties as affected by TPH contamination. In: 2000 Conference On Hazardous Waste Research, pp. 356–359.

  • Calle, J. A. C. (2000). Análise de ruptura de talude de um solo não saturado. Master’s degree Dissertation, Escola de Engenharia de São Carlos, Universidade de São Paulo, Brasil (in Portuguese).

  • Camargo, A. O., Moniz, A. C., Jorge, J. A., & Valadares, J. M. A. S. (2009). Métodos de Analise Química, Mineralógica e Física de Solos do Instituto Agronômico de Campinas. Edição revista e atualizada. Campinas: Instituto Agronômico (in Portuguese).

  • Chandler, R. J., & Gutierrez, C. I. (1986). The filter paper method of suction measurement. Geotechnique, 36(2), 265–268.

    Article  Google Scholar 

  • Chandler, R. J., Crilly, M. S., & Montgomery-Smith, G. (1992). A low cost method of assessing clay desiccation for low-rise buildings. Proceedings of Institute of Civil Engineering, 92, 82–89.

    Google Scholar 

  • Chang, A. C., Page, A. L., & Warneke, J. E. (1983). Soil condition effects of municipal sludge composting. Journal of Environmental Engineering Division, 109(3), 199–210.

    Google Scholar 

  • Crist, J. T., McCarthy, J. F., Zevi, Y., Baveye, P., Throop, J. A., & Steenhuis, T. S. (2004). Pore-scale visualization of colloid transport and retention in partly saturated porous media. Vadose Zone Journal, 3(2), 444–450.

    Article  CAS  Google Scholar 

  • Crist, J. T., Zevi, Y., McCarthy, J. F., Throop, J. A., & Steenhuis, T. S. (2005). Transport and retention mechanisms of colloids in partially saturated porous media. Vadose Zone Journal, 4, 184–195.

    Article  CAS  Google Scholar 

  • Paixão Filho, J. L., & Miguel, M. G. (2017). Long-term characterization of landfill leachate: impacts of the tropical climate on its composition. American Journal of Environmental Sciences, 13(2), 116–127.

    Article  Google Scholar 

  • de Lemos, J. L., Bostick, B. C., Renshaw, C. E., Sturup, S., & Feng, X. (2006). Landfill-stimulated iron reduction and arsenic release at the Coakley superfund site (NH). Environmental Science & Technology, 40, 67–73.

    Article  CAS  Google Scholar 

  • Dias, C. L., Oliveira, M. L. S., Hower, J. C., Taffarel, S. R., Kautzmann, R. M., & Silva, L. F. O. (2014). Nanominerals and ultrafine particles from coal fires from Santa Catarina, South Brazil. International Journal of Coal Geology, 122, 50–60.

    Article  CAS  Google Scholar 

  • Fallah, M., Shabanpor, M., & Ebrahimi, S. (2015a). Evaluation of petroleum impacts on some properties of loamy sand soil with the main focus on hydraulic properties. Environmental Earth Sciences, 74, 4751–4762.

    Article  CAS  Google Scholar 

  • Fallah, M., Shabanpor, M., Zakerinia, M., & Ebrahimi, S. (2015b). Risk assessment of gas oil and kerosene contamination on some properties of silty clay soil. Environmental Monitoring and Assessment. https://doi.org/10.1007/s10661-015-4633-0.

  • Fawcett, R. G., & Collis-George, N. (1967). A filter paper method for determining the moisture characteristics of soil. Australian Journal of Experimental Agriculture and Animal Husbandry, 7, 162–167.

    Article  Google Scholar 

  • Flury, M., & Qiu, H. (2008). Modeling colloid-facilitated contaminant transport in the vadose zone. Vadose Zone Journal, 7, 682–697.

    Article  Google Scholar 

  • Franchi, A., & O’Melia, C. R. (2003). Effects of natural organic matter and solution chemistry on the deposition and reentrainment of colloids in porous media. Environmental Science & Technology, 37(6), 1122–1129.

    Article  CAS  Google Scholar 

  • Freeze, R. A., & Cherry, J. A. (1979). Groundwater. Englewood Cliffs: Prentice-Hal.

    Google Scholar 

  • Gao, B., & Saiers, J. E. (2006). Pore-scale mechanisms of colloid deposition and mobilization during steady and transient flow through unsaturated granular media. Water Resources Research. https://doi.org/10.1029/2005WR004233.

  • Gardner, R. (1937). A method of measuring the capillary tension of soil moisture over a wide moisture range. Soil Science, 43, 277–283.

    Article  CAS  Google Scholar 

  • Gargiulo, G., Bradford, S., Simunek, J., Ustohal, P., Vereecken, H., & Klumpp, E. (2007). Bacteria transport and deposition under unsaturated conditions: the role of the matrix grain size and the bacteria surface protein. Journal of Contaminant Hydrology, 92, 255–273.

    Article  CAS  Google Scholar 

  • Gerscovich, D. M. S., & Sayão, A. S. F. J. (2002). Evaluation of the soil-water characteristic curve equations for soils from Brazil. In: Third International Conference on Unsaturated Soils - UNSAT2002, 1, pp. 295–300, Recife.

  • Ghanbarian-Alavijeh, B., Liaghat, A., Huang, G., & van Genuchten, M. T. (2010). Estimation of the van Genuchten soil water retention properties from soil textural data. Pedosphere, 20(4), 456–465.

    Article  Google Scholar 

  • Ghavami, M., Javadi, S., & Zhao, Q. (2016). Laboratory characterization of the saturated conductivities of compacted clay-organobentonite mixtures. Geo-Chicago 2016, GSP 271.

  • Greacen, E. L, Walker, G. R. & Cook P. G. (1989). Procedure for the filter paper method of measuring soil water suction. Division of soils, Report 108, CSIRO Division of Water Resources, Glen Osmond, Australia.

  • Gupta, S. C., & Larson, W. E. (1979). Estimating soil water retention characteristics from particle size distribution, organic matter content, and bulk density. Water Resources Research, 15(6), 1633–1635.

    Article  Google Scholar 

  • Hamblin, A. P. (1981). Filter paper method for routine measurement of field water potential. Journal of Hydrology, 53, 355–360.

    Article  Google Scholar 

  • Hillel, D. (1971). Soil water-physical principle and processes. New York: Academic Press.

    Google Scholar 

  • Houston, S. L., Houston, W. N., & Wagner, A. (1994). Laboratory filter paper suction measurements. Geotechnical Testing Journal, 17(2), 185–194.

    Article  Google Scholar 

  • Hower, J. C., O’Keefe, J. M. K., Henke, K. R., Wagner, N. J., Copley, G., Blake, D. R., Garrison, T., Oliveira, M. L. S., Kautzmann, R. M., & Silva, L. F. O. (2013). Gaseous emissions and sublimates from the Truman Shepherd coal fire, Floyd County, Kentucky: a re-investigation following attempted mitigation of the fire. International Journal of Coal Geology, 116–117, 63–74.

    Article  Google Scholar 

  • Ichola, A., & Gaidi, L. (2006). Hydraulic conductivity and pollutant dispersion coefficient assessment during leachate flow in unsaturated clay. Unsaturated Soils, 2(147), 1547–1558.

    Article  Google Scholar 

  • Joseph, J. B., Styles, J. R., Yuen, S. T. & Cressey, G. (2001). Variation in clay mineral performance in the presence of leachates. In: Proceeding of the Eighth International Landfill Symposium, Sardinia, Italy.

  • Kayode, J., Oyedeji, A. A., & Olowoyo, O. (2009). Evaluation of the effects of pollution with spent lubricating oil on the physical and chemical properties of soil. The Pacific Journal of Science and Technology, 10(1), 387–391.

    Google Scholar 

  • Khlosi, M., Cornelis, W. M., Gabriels, D., & Sin, G. (2006). Simple modification to describe the soil water retention curve between saturation and oven dryness. Water Resources Research. https://doi.org/10.1029/2005WR004699.

  • Kjeldsen, P., Barlaz, M. A., Rooker, A. P., Baun, A., Ledin, A., & Christensen, T. H. (2002). Present and long-term composition of MSW landfill leachate: a review. Critical Reviews in Environmental Science and Technology, 32(4), 297–336.

    Article  CAS  Google Scholar 

  • Konyai, S., Sriboonlue, V., Trelo-Ges, V., & Muangson, N. (2006). Hysteresis of water retention curve of saline soil. Unsaturated Soils, 189, 1394–1404.

    Article  Google Scholar 

  • Krahn, J., & Fredlund, D. G. (1972). On total, matric and osmotic suction. Soil Science, 114(5), 339–348.

    Article  Google Scholar 

  • Kronbauer, M. A., Izquierdo, M., Dai, S., Waanders, F. B., Wagner, N. J., Mastalerz, M., Hower, J. C., Oliveira, M. L. S., Taffarel, S. R., Bizani, D., & Silva, L. F. O. (2013). Geochemistry of ultra-fine and nano-compounds in coal gasification ashes: a synoptic view. Science of the Total Environment, 456–457, 95–103.

    Article  Google Scholar 

  • Leme, M. A. G., & Miguel, M. G. (2014). Soil water retention curves of a compacted soil used as liner of a sanitary landfill. In: 6TH International Conference on Unsaturated Soils, 1, Sydney – Australia.

    Chapter  Google Scholar 

  • Leong, E. C., He, L., & Rahardjo, H. (2002). Factors affecting the filter paper method for total and matric suction measurements. Geotechnical Testing Journal, 25(3), 322–332.

    Google Scholar 

  • Liu, T., & Hu, L. (2014). Organic acid transport through a partially saturated liner system beneath a landfill. Geotextiles and Geomembranes, 42, 428–436.

    Article  Google Scholar 

  • Lorenzetti, R. J., Bartelt-Hunt, S. L., Burns, S. E., & Smith, J. A. (2005). Hydraulic conductivities and effective diffusion coefficients of geosynthetic clay liners with organobentonite amendments. Geotextiles and Geomembranes, 23(5), 385–400.

    Article  Google Scholar 

  • Malaya, C., & Sreedeep, S. Evaluation of SWCC model and estimation procedure for soil and fly ash. (2010). In: World Environmental and Water Resources Congress, Providence, Rhode Island: ASCE 614–622,

  • Marinho, F. A. M. (1994). Shrinkage behavior of some plastic clays. PhD Thesis, Imperial College, University of London.

  • Marinho, F. A. M., & Oliveira, O. M. (2006). The filter paper method revised. ASTM Geotechnical Testing Journal, 29(3), 250–258.

    Google Scholar 

  • Marinho, F. A. M., & Stuermer, M. M. (2000). The influence of the compaction energy on the swsc of a residual soil. In: Geo-Denver 2000, 99, pp. 125–141, Denver.

  • Martin, J. P., & Koerner, R. M. (1984a). The influence of vadose zone conditions on groundwater pollution. Part I: basic principles and static conditions. Journal of Hazardous Materials, 8, 349–366.

    Article  CAS  Google Scholar 

  • Martin, J. P., & Koerner, R. M. (1984b). The influence of vadose zone conditions on groundwater pollution. Part II: fluid movement. Journal of Hazardous Materials, 9, 181–207.

    Article  CAS  Google Scholar 

  • Martinello, K., Oliveira, M. L. S., Molossi, F. A., Ramos, C. G., Teixeira, E. C., Kautzmann, R. M., & Silva, L. F. O. (2014). Direct identification of hazardous elements in ultra-fine and nanominerals from coal fly ash produced during diesel co-firing. Science of the Total Environment, 470–471, 444–452.

    Article  Google Scholar 

  • Mavroulidou, M., Cabarkapa, Z., & Gunn, M. J. (2013). Efficient laboratory measurements of the soil water retention curve. Geotechnical Testing Journal, 36, 88–96.

    Article  Google Scholar 

  • Merayyan, S., & Hope, A. (2009). The affect of municipal landfill leachate on the characterization of fluid flow through clay. In: World Environmental and Water Resources Congress, 2009, Great Rivers, Proceedings... Great Rivers: ASCE, pp 2505–2519.

  • Morales, V. L., Gao, B., & Steenhuis, T. S. (2009). Grain surface-roughness effects on colloid retention in the vadose zone. Vadose Zone Journal, 8(1), 11–20.

    Article  CAS  Google Scholar 

  • Nouri, M., Homaee, M., & Bybordi, M. (2014). Quantitative assessment of LNAPLs retention in soil porous media. Soil and Sediment Comtamination, 23, 801–819.

    Article  CAS  Google Scholar 

  • Olson, R. E., & Langfelder, L. J. (1965). Pore water pressures in unsaturated soils. Journal of the Soil Mechanics and Foundations Division, 91, 127–150.

    Google Scholar 

  • Øygard, J. K., Måge, A., & Gjengedal, E. (2004). Estimation of the mass-balance of selected metals in four sanitary landfills in Western Norway, with emphasis on the heavy metal content of the deposited waste and the leachate. Water Research, 38(12), 2851–2858.

    Article  Google Scholar 

  • Ozcoban, M. S., Tufekci, N., Tutus, S., Sahin, U., & Celik, S. O. (2006). Leachate removal rate and the effect of leachate on the hydraulic conductivity of natural (undisturbed) clay. Journal of Scientific & Industrial Research, 65, 264–269.

    CAS  Google Scholar 

  • Powelson, D. K., & Mills, A. L. (2001). Transport of Escherichia coli in sand columns with constant and changing water contents. Journal of Environmental Quality, 30, 238–245.

    Article  CAS  Google Scholar 

  • Regadío, M., de Soto, I. S., Rodríguez-Rastrero, M., Ruiz, A. I., Gismera, M. J., & Cuevas, J. (2013). Processes and impacts of acid discharges on a natural substratum under a landfill. Science of the Total Environment, 463–464, 1049–1059.

    Article  Google Scholar 

  • Ridley, A. M. (1993). The measurement of soil moisture suction. PhD thesis, University of London.

  • Rojas, E. (2002). Modeling the soil water characteristic curve during wetting e drying cycles. In: 3 o International Conference on Unsaturated Soil, 1, pp. 215–219, Recife, Brasil.

  • Runnels, D. D. (1976). Wastewaters in the vadose zone of arid regions: geochemical interactions. Ground Water, 14(6), 374–385.

    Article  Google Scholar 

  • Saiers, J. E., & Lenhart, J. J. (2003a). Colloid mobilization and transport within unsaturated porous media under transient-flow conditions. Water Resources Research. https://doi.org/10.1029/2002WR001370.

  • Saiers, J. E., & Lenhart, J. J. (2003b). Ionic strength effects on colloid transport and interfacial reactions in partially saturated porous media. Water Resources Research. https://doi.org/10.1029/2002WR001887.

  • Shang, J. Q., & Rowe, R. K. (2003). Detecting landfill leachate contamination using soil electrical properties. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management, 7(1), 3–11.

    Article  CAS  Google Scholar 

  • Silva, F. C. (2009). Manual de análises químicas de solos, plantas e fertilizantes. Brasília: Embrapa Informação Tecnológica .

    Google Scholar 

  • Tong, H., Yin, K., Ge, L., Giannis, A., Chuan, V. W. L., & Wang, J. Y. (2015). Monitoring transitory profiles of leachate humic substances in landfill aeration reactors in mesophilic and thermophilic conditions. Journal of Hazardous Materials, 287, 342–348.

    Article  CAS  Google Scholar 

  • Torkzaban, S., Bradford, S. A., van Genuchten, M. T., & Walker, S. L. (2008). Colloid transport in unsaturated porous media: the role of water content and ionic strength on particle straining. Journal of Contaminant Hydrology, 96, 113–127.

    Article  CAS  Google Scholar 

  • Twarakavi, N., Saito, H., Simunek, J., & van Genuchten, M. T. (2008). A new approach to estimate soil hydraulic parameters using only soil water retention data. Soil Science Society of America Journal, 72, 471–479.

    Article  CAS  Google Scholar 

  • van Genuchten, M. T. (1980). A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America, 44(5), 892–898.

    Article  Google Scholar 

  • van Genuchten, M. T., & Nielsen, D. R. (1991). On describing and predicting the properties of unsaturated soils. Annales Geophysicae, 3(5), 615–628.

    Google Scholar 

  • van Genuchten, M. T., Leij, F. J., & Yates, S. R. (1991). The RETC code for quantifying the hydraulic functions of unsaturated soils. EPA/600/2-91/065.

  • Veyera, G. E., & Martin, J. P. (1983). Composition, density and fabric effects on bulky waste retention characteristics. In J. W. Mercer, P. S. C. Rao, & I. W. Marine (Eds.), Role of the unsaturated zone in radioactive and hazardous waste disposal. Ann Arbor: Ann Arbor Science.

    Google Scholar 

  • Yin, K., Tong, H., Giannis, A., Chang, W.-C., & Wang, J.-Y. (2016). Insights for transformation of contaminants in leachate at a tropical landfill dominated by natural attenuation. Waste Management, 53, 105–115.

    Article  CAS  Google Scholar 

  • Zevi, Y., Dathe, A., McCarthy, J. F., Richards, B. K., & Steenhuis, T. S. (2005). Distribution of colloid particles onto interfaces in partially saturated sand. Environmental Science & Technology, 39(18), 7055–7064.

    Article  CAS  Google Scholar 

  • Zhang, W., Morales, V. L., Cakmak, M. E., Salvucci, A. E., Geohring, L. D., Hay, A. G., Parlance, J.-Y., & Steenhuis, T. S. (2010). Colloid transport and retention in unsaturated porous media: effect of colloid input concentration. Environmental Science & Technology, 44(13), 4965–4972.

    Article  CAS  Google Scholar 

  • Zhu, L., Li, Y., & Zhang, J. (1997). Sorption of organobentonites to some organic pollutants in water. Environmental Science & Technology, 31(5), 1407–1410.

    Article  CAS  Google Scholar 

  • Zhuang, J., Qi, J., & Jin, Y. (2005). Retention and transport of amphiphilic colloids under unsaturated flow conditions: effect of particle size and surface property. Environmental Science & Technology, 39(20), 7853–7859.

    Article  CAS  Google Scholar 

Download references

List of Symbols, Abbreviations, and Acronyms

α - Curve adjustment parameter (van Genuchten's model 1980)

Al2O3 - Aluminum oxide

BOD - Biochemical oxygen demand

CaCO3 - Calcium carbonate

CAPES - Brazilian Coordination for the Improvement of Higher Education Personnel

CEC - Cation exchange capacity

CL - Clay of low compressibility

COD - Chemical oxygen demand

D - Drying pathway

E.d. - Empirical data

FAPESP - Support Foundation for Research in the State of São Paulo

Fe2O3 - Ferric oxide

HAc - Acetic acid

μ - Micro (prefix)

m - Adjustment parameter related to curve asymmetry (van Genuchten's model 1980)

MIP - Mercury intrusion porosimetry

MSW - Municipal solid waste

n - Adjustment parameter related to uniform pore distribution (van Genuchten’s model 1980)

N-NH - Ammonia nitrogen

O2 - Oxygen

pH - Potential of hydrogen

ψ - Suction

PZC - Point of zero charge

RETC - RETention curve software

S - Specimen

SiO2 - Silicon dioxide

SLRC - Soil leachate retention curve

SW(L)RC - Soil water and leachate retention curves

SWRC - Soil water retention curve

TiO2 - Titanium dioxide

USCS - Unified soil classification system

v. G. - van Genuchten fit

w - Gravimetric moisture content

W - Wetting pathway

wr - Residual gravimetric moisture content

ws - Gravimetric moisture content in saturated conditions

Funding

The authors thank Support Foundation for Research in the State of São Paulo (FAPESP) for supporting the research (process number 2010/18560-4), Consórcio RENOVA Ambiental, Maccaferri do Brasil Ltda. and the City of Campinas for their support in conducting the research, and the Brazilian Coordination for the Improvement of Higher Education Personnel (CAPES) for financial support (finance code 001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariane Alves de Godoy Leme.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alves de Godoy Leme, M., Gonçalves Miguel, M. Permeability and Retention to Water and Leachate of a Compacted Soil Used as Liner. Water Air Soil Pollut 229, 374 (2018). https://doi.org/10.1007/s11270-018-4001-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-018-4001-0

Keywords

Navigation