Skip to main content
Log in

Residual Organic Compound Removal from Aqueous Solution Using Commercial Coconut Shell Activated Carbon Modified by a Mixture of Seven Metal Salts

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The modified activated carbon (MAC) derived from commercial coconut shell activated carbon (AC) with mixture of seven metal salts was used as an adsorbent to remove target residual organic compound (sucrose) from aqueous solutions in batch modes. The results indicated that the highest adsorption capacity of sucrose onto MAC reached when the AC was modified at the ratio of impregnation of AC with mixture of seven metal salts, including nitrate silver (AgNO3), manganese nitrate (Mn (NO3)2), potassium bichromate (K2Cr2O7), nitrate cobalt (Co (NO3)2·6H2O), nitrate copper (Cu (NO3)2·3H2O), nitrate nickel (Ni (NO3)2·6H2O) and nitrate iron (Fe (NO3)2·9H2O) of 3% (w/w). The most appropriate conditions for sucrose adsorption onto MAC in batch experiments obtained at pH 7, contact time of 120 min, 800 mg MAC/50 mL of sucrose solution with initial concentration of 1500 mg/L. At this condition, the highest adsorption capacity of sucrose onto MAC reached 28.28 mg/g. The Langmuir, Freundlich, and Sips adsorption isothermal equilibrium models can adequately describe the adsorption properties of sucrose on MAC. The adsorption kinetic of sucrose onto MAC obeyed pseudo-first-order and pseudo-second-order models with the chemical sorption process. The saturated MAC was recovered by heat from an oven. The highest recovery efficiency of saturated MAC obtained at 180 °C in 120 min. The highest adsorption capacity of sucrose onto recovered MAC was 24.31 mg/g, appropriately adsorption capacity of initial MAC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • APHA. (2012). Standard methods for the examination of water and wastewater. Washington DC: American public health association

  • Ayawei, N., Ebelegi, A. N., & Wankasi, D. (2017). Modelling and interpretation of adsorption isotherms. Journal of Chemistry, 1–11.

    Article  CAS  Google Scholar 

  • Covinich, L., Felissia, F., Fenoglio, R., & Area, M. C. (2017). Removal of recalcitrant organic compounds from an industrial complex effluent by heterogeneous Fenton-type treatment. Clean: Soil, Air, Water, 45, 1–24.

    Google Scholar 

  • Dada, A. O., Olalekan, A. P., Olatunya, A. M., & Dada, O. (2012). Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherms studies of equilibrium sorption of Zn2+ unto phosphoric acid modified rice husk. IOSR Journal of Applied Chemistry (IOSR-JAC), 3, 38–45.

    Article  CAS  Google Scholar 

  • Duong, T. B. N., Nguyen, T. M. L., & Nguyen, T. T. (2013). Study on adsorption capacity of methylene blue by biochar derived from corn peel and corncob. Journal of Forest and Environmental Management, 2, 77–81.

    Google Scholar 

  • Fierro, V., Torné-Fernández, V., & Celzard, A. (2006). Kraft lignin as a precursor for microporous activated carbons prepared by impregnation with ortho-phosphoric acid: synthesis and textural Characterisation. Microporous and Mesoporous Materials, 92, 243–250.

    Article  CAS  Google Scholar 

  • Ghaffar, A., & Younis, M. N. (2014). Adsorption of organic chemicals on grapheme coated biochars and its environmental implications. Green Processing and Synthesis, 3, 479–487.

    Article  CAS  Google Scholar 

  • Guiza, M., Abdedayem, A., Ghouma, I., & Ouederni, A. (2017). Effect of copper and nickel supported activated carbon catalysts on the simultaneous adsorption/ozonation process of nitrobenzene degradation. Journal of Chemical Technology and Metallurgy, 52, 836–851.

    Google Scholar 

  • Hamdaoui, O. (2006). Batch study of liquid-phase adsorption of methylene blue using cedar sawdust and crushed brick. Journal of Hazardous Materials, 135, 264–273.

    Article  CAS  Google Scholar 

  • Han, Y., Cao, X., Ouyang, X., Sohi, S. P., & Chen, J. (2016). Adsorption kinetics of magnetic biochar derived from peanut hull on removal of Cr (VI) from aqueous solution: effects of production conditions and particle size. Chemosphere, 145, 336–341.

    Article  CAS  Google Scholar 

  • Hidayua, A. R., & Muda, N. (2016). Preparation and characterization of impregnated activated carbon from palm kernel shell and coconut shell for CO2 capture. Procedia Engineering, 148, 106–113.

    Article  CAS  Google Scholar 

  • Ho, Y. S., & McKay, G. (2000). The kinetics of divalent metal ions onto sphagnum moss peat. Water Research, 34, 735–742.

    Article  CAS  Google Scholar 

  • Ho, Y.S., McKay, G. (1999). Pseudo-second order model for sorption processes. Process Biochemistry, 34, 451–465.

    Article  CAS  Google Scholar 

  • Hossain, M. A., Ngo, H. H., Guo, W. S., & Nguyen, T. V. (2012). Removal of copper from water by adsorption onto banana peel as bioadsorbent. International Journal of Geomate, 2, 227–234.

    Google Scholar 

  • Jain, M., Garg, V. K., & Kadirvelu, K. (2010). Adsorption of hexavalent chromium from aqueous medium onto carbonaceous adsorbents prepared from waste biomass. Journal of Environmental Management, 99, 949–957.

    Article  CAS  Google Scholar 

  • Jiménez-Becerril, J., Moreno-López, A., & Jiménez-Reyes, M. (2016). Radiocatalytic degradation of dissolved organic compounds in wastewater. Nukleonika, 61, 473–476.

    Article  CAS  Google Scholar 

  • Kim, E., Jung C., Han, J., Her, N., Park, C. M., Son, A., Yoon, Y. (2016). Adsorption of selected micropollutants on powdered activated carbon and biochar in the presence of kaolinite. Desalination and Water Treatment, 57, 27601–27613.

  • Langmuir, I. (1918). The sorption of gases on plane surface of glass, mica, and platinum. Journal of the American Chemical Society, 40(9), 1361–1403.

    Article  CAS  Google Scholar 

  • Lopes, A. S. D. C., Carvalho, S. M. L. D., Do Socorro Barros Brasil, D., De Alcântara Mendes, R., & Lima, M. O. (2015). Surface modification of commercial activated carbon (CAG) for the adsorption of benzene and toluene. American Journal of Analytical Chemistry, 6, 528–538.

    Article  CAS  Google Scholar 

  • Makhathini, T. P., & Rathilal, S. (2018). Modelling competitive BTEX compounds removal from industrial wastewater in packed-bed columns using polystyrenic resin. Journal of Water Reuse and Desalination, in press. https://doi.org/10.2166/wrd.2017.045.

    Article  Google Scholar 

  • Monser, L., & Adhoum, N. (2002). Modified activated carbon for the removal of copper, zinc, chromium and cyanide from wastewater. Separation and Purification Technology, 26, 137–146.

    Article  CAS  Google Scholar 

  • Nguyen, V. H. (2017). Research on modifying Tra Bac activated carbon and adsorbing dyes. Journal of forest Science and Technology, 1, 56–60.

    Google Scholar 

  • Rai, M. K., Shahi, G., Meena, V., Meena, R., Chakraborty, S., Singh, R. S., & Rai, B. N. (2016). Removal of hexavalent chromium Cr (VI) using activated carbon prepared from mango kernel activated with H3PO4. Resource-Efficient Technologies, 2, S63–S70.

    Article  Google Scholar 

  • Schaider, L. A., Rodgers, K. M., & Rudel, R. A. (2017). Review of organic wastewater compound concentrations and removal in onsite wastewater treatment systems. Environmental Science and Technology, 51, 7304–7317.

    Article  CAS  Google Scholar 

  • Singh, C. K., Sahu, J. N., Mahalik, K. K., Mohanty, C. R., & Mohan, B. R. (2008). Studies on the removal of Pb(II) from wastewater by activated carbon developed from Tamarind wood activated with sulphuric acid. Journal of Hazardous Materials, 153, 221–228.

    Article  CAS  Google Scholar 

  • Vinod, G. K., Alok, M., Rajeev, J., Megha, M., & Shalini, S. (2006). Adsorption of safranin-T from wastewater using waste materials-activated carbon and activated rice husks. Journal of Colloid and Interface Science, 303, 80–86.

    Article  CAS  Google Scholar 

  • Vu, T. M., Doan, D. P., Van, H. T., Nguyen, T. V., Vigneswaran, S., & Ngo, H. H. (2017). Removing ammonium from water using modified corncob-biochar. Science of the Total Environment, 579(1), 612–619.

    Article  CAS  Google Scholar 

  • Vu, X. M., Luong, T. M. H., Tran, T. H., Nguyen, V. G., & Nguyen, T. D. (2014). Investigating the removal of dye by modified red sludge with gypsum. Journal of Siciences, Hanoi National University, 30(2), 55–60.

    Google Scholar 

  • Yorgun, S., Vural, N., & Demiral, H. (2009). Preparation of high-surface area activated carbons from Paulownia wood by ZnCl2 activation. Microporous and Mesoporous Materials, 122, 189–194.

    Article  CAS  Google Scholar 

  • Yu, X., Wei, C., Wu, H., Jiang, Z., & Xu, R. (2015). Improvement of biodegradability for coking wastewater by selective adsorption of hydrophobic organic pollutants. Separation and Purification Technology, 151, 23–30.

    Article  CAS  Google Scholar 

  • Yu, J., Zhang, X., Wang, D., Li, P. (2018). Adsorption of methyl orange dye onto biochar adsorbent prepared from chicken manure. Water Science & Technology, 77, 1303–1312

    Article  Google Scholar 

  • Zheng, C., Zhao, L., Zhou, X., Fu, Z., An Li, A. (2013). Water treatment: treatment technologies for organic wastewater. In W. Elsorbagy (Ed.), Water Treatment (pp. 250–286). IntechOpen.

  • Zhu, K., Fu, H., Zhang, J., Lv, X., Tang, J., & Xu, X. (2012). Studies on removal of NH4 +-N from aqueous solution by using the activated carbons derived from rice husk. Biomass and Bioenergy, 43, 18–25.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The Authors are thankful to APTCO VN., JSC for the financial assistance to conduct this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lan Huong Nguyen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van, H.T., Bui, T.T.P. & Nguyen, L.H. Residual Organic Compound Removal from Aqueous Solution Using Commercial Coconut Shell Activated Carbon Modified by a Mixture of Seven Metal Salts. Water Air Soil Pollut 229, 292 (2018). https://doi.org/10.1007/s11270-018-3953-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-018-3953-4

Keywords

Navigation