Skip to main content
Log in

Numerical Simulation and Sensitivity Analysis for Nitrogen Dynamics Under Sewage Water Irrigation with Organic Carbon

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

This study is focused on investigating the impacts of organic carbon on the denitrification process of nitrogen transformation and transport. A numerical model, Nitrogen-2D, is modified by considering the impact of organic carbon in the denitrification equation. The modified model is used to simulate the soil nitrogen (including nitrate and ammonium) dynamics under the primary and secondary sewage water irrigation with different organic carbon concentrations. The simulated results of accumulated drainage water amount, soil nitrogen concentration, and nitrogen concentration in the drainage water show that the simulations and measurements are consistent. The comparison of results from the original and improved models shows the necessity to consider the impact of organic carbon. The nitrogen mass balance is calculated to analyze the nitrogen transformation processes quantitatively under different input organic carbon sources. Furthermore, the effect of different input organic carbon sources on the soil nitrogen dynamics is investigated by using the modified Nitrogen-2D model with the calibrated parameters. The input organic carbon source helps to speed up the mineralization and denitrification, which contributes to the slight increase of ammonium concentration and the decrease of nitrate concentration in the shallow soil. Since a large number of soil water and nitrogen transformation and transport parameters are needed when setting up the model, a local sensitivity method is conducted to evaluate the input parameters by the sewage water irrigation case. The results show that the drainage water amount is very sensitive to the exponent n and the coefficient α of the soil water retention function and that the ammonium concentration is very sensitive to the first-order nitrification rate constant, the decomposition rate coefficient in humus pool, and the soil ammonium adsorption coefficient. The nitrate concentration is sensitive to more parameters, especially to the exponent n and the coefficient α in the soil water retention function and to the denitrification rate constant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Bechtold, I., Köhne, S., Youssef, M. A., Lennartz, B., & Skaggs, R. W. (2007). Simulating nitrogen leaching and turnover in a subsurface-drained grassland receiving animal manure in Northern Germany using DRAINMOD-N II. Agricultural Water Management, 93, 30–44.

    Article  Google Scholar 

  • Bedessem, M. E., Edgar, T. V., & Roll, R. (2005). Nitrogen removal in laboratory model leach fields with organic-rich layers. Journal of Environmental Quality, 34, 936–942.

    Article  CAS  Google Scholar 

  • Bijay-Singh, Ryden, J. C., & Whitchead, D. C. (1988). Some relationships between denitrification potential and fractions of organic carbon in air-dried and field-moist soils. Soil Biology and Biochemistry, 20, 737–741.

    Article  Google Scholar 

  • Bixio, D., Thoeye, C., De Koning, J., Joksimovic, D., Savic, D., Wintgens, T., & Melin, T. (2006). Wastewater reuse in Europe. Desalination, 187(1–3), 89–101.

    Article  CAS  Google Scholar 

  • Bradbury, N. J., Whitmore, A. P., Hart, P. B. S., & Jenkinson, D. S. (1993). Modelling the fate of nitrogen in crop and soil in the years following application of 15N-labelled fertilizer to winter wheat. Journal of Agriculture Science (Cambridge), 121, 363–379.

    Article  CAS  Google Scholar 

  • Castillo, E., Hadi, A. S., Conejo, A., & Fernández-Canteli, A. (2004). A general method for local sensitivity analysis with application to regression models and other optimization problems. Technometrics, 46(4), 430–444.

    Article  Google Scholar 

  • Cheng, X., & Xu, D. (2012). Effects of carbon content on transport and transformation discipline of nitrogen in soil with wastewater irrigation. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 28(14), 85–90 (in Chinese with English abstract).

    CAS  Google Scholar 

  • Dodla, S. K., Wang, J. J., DeLaune, R. D., & Robert, L. C. (2008). Denitrification potential and its relation to organic carbon quality in three coastal wetland soils. Science of the Total Environment, 407, 417–480.

    Article  CAS  Google Scholar 

  • Echersten, H., Hansson, P.-E., & Johnsson, H. (1996). SOILN model user’s manual. Uppsala: Swedish University of Agricultural Sciences.

    Google Scholar 

  • Franko, U., Oelschlägel, B., & Schenk, S. (1995). Simulation of temperature-, water- and nitrogen dynamics using the model CANDY. Ecological Modelling, 81, 213–222.

    Article  CAS  Google Scholar 

  • Gale, P. M., Devai, I., Reddy, K. R., & Graetz, D. A. (1993). Denitrification potential of soils from constructed and natural wetlands. Ecological Engineering, 2, 119–130.

    Article  Google Scholar 

  • Garcia-Montiel, D. C., Melillo, J. M., Steudler, P. A., Cerri, C. C., & Piccolo, M. C. (2003). Carbon limitations to nitrous oxide emissions in a humid tropical forest of the Brazilian Amazon. Biology and Fertility of Soils, 38, 267–272.

    Article  CAS  Google Scholar 

  • Godwin, D. C., & Jones, C. A. (1991). Nitrogen dynamics in soil-plant systems. In J. Hanks & J. T. Ritchie (Eds.), Modeling plant and soil systems (pp. 287–321). Madison: ASA CSSA and SSSA.

    Google Scholar 

  • Hamby, D. M. (1994). A review of techniques for parameter sensitivity analysis of environmental models. Environmental Monitoring and Assessment, 32(2), 135–154.

    Article  CAS  Google Scholar 

  • Hansen, S., Jensen, H. E., Nielsen, N. E., & Svendsen, H. (1993). Users guide to the DAISY simulation model. Copenhagen: The Royal Veterinary and Agricultural University.

    Google Scholar 

  • Heinen, M. (2006). Simplified denitrification models: overview and properties. Geoderma, 133, 444–463.

    Article  CAS  Google Scholar 

  • Huwe, B., & Totsche, K. U. (1995). Deterministic and stochastic modelling of water, heat and nitrogen dynamics on different scales with WHNSIM. Journal of Contaminant Hydrology, 20, 265–284.

    Article  CAS  Google Scholar 

  • Jalali, M., Merikhpour, H., Kaledhonkar, M. J., & van Der Zee, S. E. A. T. M. (2008). Effects of wastewater irrigation on soil sodicity and nutrient leaching in calcareous soils. Agricultural Water Management, 95(2), 143–153.

    Article  Google Scholar 

  • Lance, J. C., Rice, R. C., & Gilbert, R. G. (1980). Renovation of wastewater by soil columns flooded with primary effluent. Journal - Water Pollution Control Federation, 52(52), 381–388.

    CAS  Google Scholar 

  • Lu, C.Y. (2004). Soil nitrogen dynamics model and simulation under sewage irrigation condition. Dissertation of Doctoral Degree. Wuhan, Wuhan Univ. (in Chinese).

  • Lu, X. H., Wang, P. F., Zhang, Y. J., & Zhi, D. (2015). Root nitrogen uptake in wastewater-irrigation pepper fields. Journal of Residuals Science & Technology, 12(4), 241–247.

    Article  CAS  Google Scholar 

  • Mackie, A., Woszczynski, M., Farmer, H., Walsh, M. E., & Gagnon, G. A. (2009). Water reclamation and reuse. Water Environment Research, 81(10), 1406–1418.

    Article  CAS  Google Scholar 

  • Marofi, S., Shakarami, M., Rahimi, G., & Ershadfath, F. (2015). Effect of wastewater and compost on leaching nutrients of soil column under basil cultivation. Agricultural Water Management, 158, 266–276.

    Article  Google Scholar 

  • McIssac, G., Martin, D., & Watts, D. (1993). NITWAT. In T. Engel, B. Klöcking, E. Priesack, & T. Schaaf (Eds.), Simulationsmodelle zur Stickstoffdynamik. Agrarinformatik Band (Vol. 25). Stuttgart: Verlag Eugen Ulmer.

    Google Scholar 

  • Miller, R. W., & Donahue, R. L. (1995). Soils in our environment (7th ed.). Englewood Cliffs, New Jersey, USA.

  • Muyen, Z., Moore, G. A., & Wrigley, R. J. (2011). Soil salinity and sodicity effects of wastewater irrigation in South East Australia. Agricultural Water Management, 99(1), 33–41.

    Article  Google Scholar 

  • Oliver, L. D., & Christakos, G. (1996). Boundary condition sensitivity analysis of the stochastic flow equation. Advances in Water Resources, 19(2), 109–120.

    Article  Google Scholar 

  • Rahil, M. H., & Antonopoulos, V. Z. (2007). Simulating soil water flow and nitrogen dynamics in a sunflower field irrigated with reclaimed wastewater. Agricultural Water Management, 92(3), 142–150.

    Article  Google Scholar 

  • Reiche, E. W. (1994). Modelling water and nitrogen dynamics on catchment scale. Ecological Modelling, 75/76, 371–384.

    Article  Google Scholar 

  • Rijtema, P. E., & Kroes, J. G. (1991). Some results of nitrogen simulation with the model ANIMO. Fertilizer Research, 27(2–3), 189–198.

    Article  CAS  Google Scholar 

  • Robertson, W. D., Blowes, D. W., Ptacek, C. J., & Cherry, J. A. (2000). Long-term of performance of in situ reactive barriers for nitrate remediation. Ground Water, 38, 689–695.

    Article  CAS  Google Scholar 

  • Rocca, C. D., Belgiorno, V., & Meri, S. (2005). Cotton-supported heterotrophic denitrification of nitrate-rich drinking water with a sand filtration post-treatment. Water S A, 31(2), 229–336.

    Article  Google Scholar 

  • Shrestha, R. K., & Ladha, J. K. (2002). Nitrate pollution in groundwater and strategies to reduce pollution. Water Science and Technology, 45(9), 29–35.

    Article  CAS  Google Scholar 

  • Sophocleous, M., Townsend, M. A., Vocasek, F., Ma, L., & Kc, A. (2009). Soil nitrogen balance under wastewater management: field measurements and simulation results. Journal of Environmental Quality, 38(3), 1286–1301.

    Article  CAS  Google Scholar 

  • Starr, R. C., & Gillham, R. W. (1993). Denitrification and organic carbon availability in two aquifers. Ground Water, 31(6), 934–947.

    Article  CAS  Google Scholar 

  • Stevens, D. P., McLaughlin, M. J., & Smart, M. K. (2003). Effects of long-term irrigation with reclaimed water on soils of the Northern Adelaide Plains, South Australia. Australian Journal of Soil Research, 41(5), 933–948.

    Article  Google Scholar 

  • Strauss, E. A., & Lamberti, G. A. (2000). Regulation of nitrification in aquatic sediments by organic carbon. Limnology and Oceanography, 45(8), 1854–1859.

    Article  Google Scholar 

  • Su, C., & Puls, R. W. (2006). Removal of added nitrate in cotton burr compost, mulch compost, and peat: mechanisms and potential use for groundwater nitrate remediation. Chemosphere, 66, 91–98.

    Article  CAS  Google Scholar 

  • Sun, H. W., Zhu, Y., Yang, J. Z., & Wang, X. G. (2015). Global sensitivity analysis for an integrated model for simulation of nitrogen dynamics under the irrigation with treated wastewater. Environmental Science and Pollution Research, 22(21), 16664–16675. https://doi.org/10.1007/s11356-015-4860-5.

    Article  CAS  Google Scholar 

  • van Genuchten, M. T. (1980). A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 892–898.

  • van Rijn, J., Tal, Y., & Schreier, H. J. (2006). Denitrification in recirculating systems: theory and applications. Aquacultural Engineering, 34, 364–376.

    Article  Google Scholar 

  • Vanclooster, M., Viaene, P., Christiaens, K., & Ducheyne, S. (1996). WAVE water and agrochemicals in soil and vadose environment, Release 2.1. Leuven: Ducheyne Institute for Land and Water Management Katholieke Universiteit Leuven.

    Google Scholar 

  • Wang, L.Y. (2007). Experiment and simulation of transformation and transport of nitrogen and phosphorus in saturated-unsaturated soils. Dissertation of Doctoral Degree. Wuhan, Wuhan Univ. (in Chinese).

  • Wu, L., & McGechan, M. B. (1998). A review of carbon and nitrogen process in four soil nitrogen dynamics models. Journal of Agricultural Engineering Research, 69, 279–305.

    Article  Google Scholar 

  • Yang, C. C., Prasher, S. O., Wang, S., Kim, S. H., Tan, C. S., Drury, C. F., & Patel, R. M. (2007). Simulation of nitrate-N movement in southern Ontario, Canada with DRAINMOD-N. Agricultural Water Management, 87, 299–306.

    Article  Google Scholar 

  • Yang, J., Wang, L., Lu, C., & Jayawardane, N. (2008). Experiment and numerical simulation of nitrogen transport in soils irrigated with treated sewage. Irrigation and Drainage, 57(2), 203–217.

    Article  Google Scholar 

  • Zhu, S. M., & Chen, S. L. (2001). Effects of organic carbon on nitrification rate in fixed film biofilters. Aquacultural Engineering, 25(1), 1–11.

    Article  Google Scholar 

  • Zhu, Y., Yang, J. Z., & Wang, L. Y. (2009). Experimental, numerical and sensitive analysis of nitrogen dynamics in soils irrigated with treated sewage. Science in China, Series E Technological Sciences, 52(11), 3279–3286.

    Article  Google Scholar 

Download references

Funding

The study was supported by the National Natural Science Foundation of China through Grants (51409192, 51790533, and 51629901), the Natural Science Foundation of Hubei Province (2016CFB576), and the Fundamental Research Funds for the Central Universities (2042017kf0012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, K., Zhu, Y., Ye, M. et al. Numerical Simulation and Sensitivity Analysis for Nitrogen Dynamics Under Sewage Water Irrigation with Organic Carbon. Water Air Soil Pollut 229, 173 (2018). https://doi.org/10.1007/s11270-018-3832-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-018-3832-z

Keywords

Navigation