Skip to main content
Log in

Greatly Improved Oil-in-Water Emulsion Separation Properties of Graphene Oxide Membrane upon Compositing with Halloysite Nanotubes

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Graphene oxide (GO)-based membranes provide an encouraging opportunity for oil-in-water emulsion separation with high separation efficiency. In this work, novel hierarchically structured membrane consisting of GO and halloysite nanotubes (HNTs) was successfully fabricated by vacuum-assisted filtration method. XRD and TEM measurements showed the successful intercalation of HNTs into the interlayers of GO nanosheets. With the incorporation of the one-dimensional hollow tubular structure halloysite nanotubes, GO-HNTs(GOH) membrane possessed combined advantages of high oil rejection rate and excellent fouling resistance properties. The permeate fluxes increased from 286.6 L/(m2·h) for GO membrane to 716 L/(m2·h) for GOH membrane. The results indicate that the GOH membranes have great potential applications in water purification and wastewater treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Baker, R. W. (2012). Membrane technology and applications (Vol. 6, pp. 3771–3777). Hoboken: Wiley.

    Book  Google Scholar 

  • Chen, S., Zhu, J., Wu, X., Han, Q., & Wang, X. (2010). Graphene oxide--MnO2 nanocomposites for supercapacitors. ACS Nano, 4, 2822–2830.

    Article  CAS  Google Scholar 

  • Chen, X., Qiu, M., Ding, H., Fu, K., & Fan, Y. (2016). A reduced graphene oxide nanofiltration membrane intercalated by well-dispersed carbon nanotubes for drinking water purification. Nanoscale, 8, 5696–5705.

    Article  CAS  Google Scholar 

  • Darvishzadeh, T., Tarabara, V. V., & Priezjev, N. V. (2013). Oil droplet behavior at a pore entrance in the presence of crossflow: Implications for microfiltration of oil–water dispersions. Journal of Membrane Science, 447, 442–451.

    Article  CAS  Google Scholar 

  • Dikin, D. A., Stankovich, S., Zimney, E. J., Piner, R. D., Dommett, G. H., Evmenenko, G., Nguyen, S. T., & Ruoff, R. S. (2007). Preparation and characterization of graphene oxide paper. Nature, 448, 457–460.

    Article  CAS  Google Scholar 

  • Fan, J., Duan, J., Yu, Z., Wu, D., & Zhu, H. (2016). Oleophobicity of chitosan/Micron-alumina-coated stainless steel mesh for oil/water separation. Water, Air, & Soil Pollution, 227, 163.

    Article  Google Scholar 

  • Gao, P., Liu, Z., Sun, D. D., & Ng, W. J. (2014). The efficient separation of surfactant-stabilized oil–water emulsions with a flexible and superhydrophilic graphene–TiO2 composite membrane. Journal of Materials Chemistry A, 2, 14082–14088.

    Article  CAS  Google Scholar 

  • Geim, A. K., & Novoselov, K. S. (2007). The rise of graphene. Nature Materials, 6, 183–191.

    Article  CAS  Google Scholar 

  • Gopal, A. (2015). A simple approach to stepwise synthesis of graphene oxide nanomaterial. Journal of Nanomedicine & Nanotechnology, 6, 369–375.

    Google Scholar 

  • Han, Y., Jiang, Y., & Gao, C. (2015). High-flux graphene oxide nanofiltration membrane intercalated by carbon nanotubes. ACS Applied Materials & Interfaces, 7, 8147–8155.

    Article  CAS  Google Scholar 

  • Hemmati, M., Rekabdar, F., Gheshlaghi, A., Salahi, A., & Mohammadi, T. (2012). Effects of air sparging, cross flow velocity and pressure on permeation flux enhancement in industrial oily wastewater treatment using microfiltration. Desalination & Water Treatment, 39, 33–40.

    Article  CAS  Google Scholar 

  • Hu, X., Yu, Y., Zhou, J., Wang, Y., Liang, J., Zhang, X., Chang, Q., & Song, L. (2015). The improved oil/water separation performance of graphene oxide modified Al2O3 microfiltration membrane. Journal of Membrane Science, 476, 200–204.

    Article  CAS  Google Scholar 

  • Huang, Y., Li, H., Wang, L., Qiao, Y., Tang, C., Jung, C., Yoon, Y., Li, S., & Yu, M. (2015). Ultrafiltration membranes with structure-optimized Graphene-oxide coatings for antifouling oil/water separation. Advanced Materials Interfaces, 2, 1400133.

    Google Scholar 

  • Hummers, W. S., & Offeman, R. E. (1958). Preparation of graphitic oxide. Journal of the American Chemical Society, 80, 1339–1339.

    Article  CAS  Google Scholar 

  • Jin, J., Gao, J. S., Qin, H., & Liu, P. (2015). SWCNT-intercalated GO ultrathin films for ultrafast separation of molecules. Journal of Materials Chemistry A, 3, 6649–6654.

    Article  Google Scholar 

  • Ju, H., Mccloskey, B. D., Sagle, A. C., Wu, Y. H., Kusuma, V. A., & Freeman, B. D. (2008). Crosslinked poly(ethylene oxide) fouling resistant coating materials for oil/water separation. Journal of Membrane Science, 307, 260–267.

    Article  CAS  Google Scholar 

  • Kim, J., Cote, L. J., Kim, F., Yuan, W., Shull, K. R., & Huang, J. (2010). Graphene oxide sheets at interfaces. Journal of the American Chemical Society, 132, 8180–8186.

    Article  CAS  Google Scholar 

  • Krishnamoorthy, K., Veerapandian, M., Yun, K., & Kim, S. J. (2013). The chemical and structural analysis of graphene oxide with different degrees of oxidation. Carbon, 53, 38–49.

    Article  CAS  Google Scholar 

  • Lee, C., Wei, X., Kysar, J. W., & Hone, J. (2008). Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 321, 385–388.

    Article  CAS  Google Scholar 

  • Levis, S. R., & Deasy, P. B. (2002). Characterisation of halloysite for use as a microtubular drug delivery system. International Journal of Pharmaceutics, 243, 125–134.

    Article  CAS  Google Scholar 

  • Li, H., Song, Z., Zhang, X., Huang, Y., Li, S., Mao, Y., Ploehn, H. J., Bao, Y., & Yu, M. (2013). Ultrathin, molecular-sieving graphene oxide membranes for selective hydrogen separation. Science, 342, 95–98.

    Article  CAS  Google Scholar 

  • Li, G., Wang, X., Tao, L., Li, Y., Quan, K., Wei, Y., Chi, L., & Yuan, Q. (2015). Cross-linked graphene membrane for high-performance organics separation of emulsions. Journal of Membrane Science, 495, 439–444.

    Article  CAS  Google Scholar 

  • Li, F., Yu, Z., Shi, H., Yang, Q., Chen, Q., Pan, Y., Zeng, G., & Yan, L. (2017). A mussel-inspired method to fabricate reduced graphene oxide/g-C3N4 composites membranes for catalytic decomposition and oil-in-water emulsion separation. Chemical Engineering Journal, 322, 33–45.

    Article  CAS  Google Scholar 

  • Liu, R., Zhang, B., Mei, D., Zhang, H., & Liu, J. (2011). Adsorption of methyl violet from aqueous solution by halloysite nanotubes. Desalination, 268, 111–116.

    Article  CAS  Google Scholar 

  • Marcano, D. C., Kosynkin, D. V., Berlin, J. M., Sinitskii, A., Sun, Z., Slesarev, A., Alemany, L. B., Lu, W., & Tour, J. M. (2010). Improved synthesis of graphene oxide. ACS Nano, 4, 4806–4814.

    Article  CAS  Google Scholar 

  • Mi, B. (2014). Graphene oxide membranes for ionic and molecular sieving. Science, 343, 740–742.

    Article  CAS  Google Scholar 

  • Motta, A., Borges, C., Esquerre, K., & Kiperstok, A. (2014). Oil produced water treatment for oil removal by an integration of coalescer bed and microfiltration membrane processes. Journal of Membrane Science, 469, 371–378.

    Article  CAS  Google Scholar 

  • O'Hern, S. C., Boutilier, M. S., Idrobo, J. C., Song, Y., Kong, J., Laoui, T., Atieh, M., & Karnik, R. (2014). Selective ionic transport through tunable subnanometer pores in single-layer graphene membranes. Nano Letters, 14, 1234–1241.

    Article  Google Scholar 

  • Padaki, M., Murali, R. S., Abdullah, M. S., Misdan, N., Moslehyani, A., Kassim, M. A., Hilal, N., & Ismail, A. F. (2015). Membrane technology enhancement in oil–water separation. A review. Desalination, 357, 197–207.

    Article  CAS  Google Scholar 

  • Rein, D. M., Khalfin, R., & Cohen, Y. (2012). Cellulose as a novel amphiphilic coating for oil-in-water and water-in-oil dispersions. Journal of Colloid & Interface Science, 386, 456–463.

    Article  CAS  Google Scholar 

  • Safarpour, M., Khataee, A., & Vatanpour, V. (2015). Effect of reduced graphene oxide/TiO2 nanocomposite with different molar ratios on the performance of PVDF ultrafiltration membranes. Separation & Purification Technology, 140, 32–42.

    Article  CAS  Google Scholar 

  • Tummons, E. N., Tarabara, V. V., Chew, J. W., & Fane, A. G. (2016). Behavior of oil droplets at the membrane surface during crossflow microfiltration of oil–water emulsions. Journal of Membrane Science, 500, 211–224.

    Article  CAS  Google Scholar 

  • Wang, K., Lin, X., Jiang, G., Liu, J. Z., Jiang, L., Doherty, C. M., Hill, A. J., Xu, T., & Wang, H. (2014). Slow hydrophobic hydration induced polymer ultrafiltration membranes with high water flux. Journal of Membrane Science, 471, 27–34.

    Article  CAS  Google Scholar 

  • Yang, L., Wang, Z., Li, X., Yang, L., Lu, C., & Zhao, S. (2016). Hydrophobic modification of Platanus fruit fibers as natural hollow fibrous sorbents for oil spill cleanup. Water Air & Soil Pollution, 227, 346.

    Article  Google Scholar 

  • Yuan, P., Southon, P. D., Liu, Z., Green, M. E. R., Hook, J. M., Antill, S. J., & Kepert, C. J. (2008). Functionalization of Halloysite clay nanotubes by grafting with γ-Aminopropyltriethoxysilane. Journal of Physical Chemistry C, 112, 15742–15751.

    Article  CAS  Google Scholar 

  • Zhang, W., Shi, Z., Zhang, F., Liu, X., Jin, J., & Jiang, L. (2013). Superhydrophobic and superoleophilic PVDF membranes for effective separation of water-in-oil emulsions with high flux. Advanced Materials, 25, 2071–2076.

    Article  CAS  Google Scholar 

  • Zhang, W., Zhu, Y., Liu, X., Wang, D., Li, J., Jiang, L., & Jin, J. (2014). Salt-induced fabrication of Superhydrophilic and underwater Superoleophobic PAA-g-PVDF membranes for effective separation of oil-in-water emulsions. Angewandte Chemie, 53, 856–860.

    Article  CAS  Google Scholar 

  • Zhang, J., Xue, Q., Pan, X., Jin, Y., Lu, W., Ding, D., & Guo, Q. (2017). Graphene oxide/polyacrylonitrile fiber hierarchical-structured membrane for ultra-fast microfiltration of oil-water emulsion. Chemical Engineering Journal, 307, 643–649.

    Article  CAS  Google Scholar 

  • Zhao, X., Su, Y., Liu, Y., Li, Y., & Jiang, Z. (2016a). Free-standing Graphene oxide-Palygorskite Nanohybrid membrane for oil/water separation. ACS Applied Materials & Interfaces, 8, 8247–8256.

    Article  CAS  Google Scholar 

  • Zhao, Y., Li, C., Fan, X., Wang, J., Yuan, G., Song, X., Chen, J., & Li, Z. (2016b). Study on the separation performance of the multi-channel reduced graphene oxide membranes. Applied Surface Science, 384, 279–286.

    Article  CAS  Google Scholar 

  • Zhu, Z., Zhang, B., Chen, B., Cai, Q., & Lin, W. (2016). Biosurfactant production by marine-originated bacteria bacillus Subtilis and its application for crude oil removal. Water Air & Soil Pollution, 227, 328–328.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financed by National Natural Science Foundation of China (Grant No. 5140003), Anhui Provincial Natural Science Foundation (1508085QE105), Scientific Research Fund of Anhui Provincial Education Department (KJ2016A791, KJ2017A030), Anhui Province Institute of High Performance Rubber Materials and Products, and The 211 Project of Anhui University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pengpeng Chen or Yifeng Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Y., Chen, P., Nie, W. et al. Greatly Improved Oil-in-Water Emulsion Separation Properties of Graphene Oxide Membrane upon Compositing with Halloysite Nanotubes. Water Air Soil Pollut 229, 94 (2018). https://doi.org/10.1007/s11270-018-3757-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-018-3757-6

Keywords

Navigation