Skip to main content
Log in

Shifts in Zooplankton Behavior Caused by a Mixture of Pesticides

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Behavioral changes have been considered as appropriate to evaluate sublethal effects of pollutants. The aim of this study was to evaluate the effects of a mixture of pesticides, with glyphosate and 2,4-D (Gly + 2,4-D) as active ingredients, on the zooplankton evasion behavior from the fish Cnesterodon decemmaculatus. An increase in the evasion behavior was observed for copepods at two different concentrations of the Gly + 2,4-D mixture, for cladocerans at the lowest pesticide concentration, and for rotifers at the highest pesticide concentration. The response time to the fish signals also differed, being copepods faster than cladocerans and rotifers. All the exposed organisms showed higher variability in their distribution over time than those of controls (without pesticides). Our results suggest that the Gly + 2,4-D mixture formulations may have a mimetic effect with the fish alarm signals. The potential consequences of maladaptive responses triggered by pesticides, as well as the increased swimming activity, are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Andersen, H. R., Wollenberger, L., Halling-Sørensen, B., & Kusk, K. O. (2001). Development of copepod nauplii to copepodites—a parameter for chronic toxicity including endocrine disruption. Environmental Toxicology and Chemistry, 20(12), 2821–2829.

    CAS  Google Scholar 

  • Brooks, J. L., & Dodson, S. I. (1965). Predation, body size, and composition of plankton. Science, 150(3692), 28–35.

    Article  CAS  Google Scholar 

  • Brooks, A. C., Gaskell, P. N., & Maltby, L. L. (2009). Sublethal effects and predator-prey interactions: Implications for ecological risk assessment. Environmental Toxicology and Chemistry, 28(11), 2449–2457.

    Article  CAS  Google Scholar 

  • Chang, K. H., Sakamoto, M., & Hanazato, T. (2005). Impact of pesticide application on zooplankton communities with different densities of invertebrate predators: an experimental analysis using small-scale mesocosms. Aquatic Toxicology, 72(4), 373–382.

    Article  CAS  Google Scholar 

  • Coors, A., & De Meester, L. (2008). Synergistic, antagonistic and additive effects of multiple stressors: predation threat, parasitism and pesticide exposure in Daphnia magna. Journal of Applied Ecology, 45(6), 1820–1828.

    Article  Google Scholar 

  • Diggle, A. J., Neve, P. B., & Smith, F. P. (2003). Herbicides used in combination can reduce the probability of herbicide resistance in finite weed populations. Weed Research, 43(5), 371–382.

    Article  Google Scholar 

  • Dodson, S. I. (1988). The ecological role of chemical stimuli for the zooplankton: predator-avoidance behavior in Daphnia. Limnology and Oceanography, 33(6;2), 1431–1439.

    Google Scholar 

  • Dodson, S. I., Lillie, R. A., & Will-Wolf, S. (2005). Land use, water chemistry, aquatic vegetation, and zooplankton community structure of shallow lakes. Ecological Applications, 15(4), 1191–1198.

    Article  Google Scholar 

  • Forbes, V. E. (2000). Is hormesis an evolutionary expectation? Functional Ecology, 14, 12–24.

    Article  Google Scholar 

  • Frontier, S. (1981) Cálculo del error en el recuento de organismos zooplanctónicos. En Boltovskoy D (ed.), Atlas del Zooplancton del Atlántico Sudoccidental y métodos de trabajo con el zooplancton marino. INIDEP, Mar del Plata, Argentina, pp. 163–167.

  • Gliwicz, Z. M. (1994). Relative significance of direct and indirect effects of predation by planktivorous fish on zooplankton. Hydrobiologia, 272, 201–210.

    Article  Google Scholar 

  • Gutierrez, M. F., Gagneten, A. M., & Paggi, J. C. (2011). Microcrustaceans escape behavior as an early bioindicator of copper, chromium and endosulfan toxicity. Ecotoxicology, 21(2), 428–438.

    Article  Google Scholar 

  • Gutierrez, M. F., Paggi, J. C., & Gagneten, A. M. (2012). Infodisruptions in predator–prey interactions: xenobiotics alter microcrustaceans responses to fish infochemicals. Ecotoxicology and Environmental Safety, 81, 11–16.

    Article  CAS  Google Scholar 

  • Gutierrez, M. F., Andrade, V., Fanton, N., & Gagneten, A. M. (2016). Facing predation risk in aquatic systems: differential response of zooplankton and habituation to the false alarm. Fundamental and Applied Limnology., 184(4), 329–339.

    Article  Google Scholar 

  • Hanazato, T. (1999). Anthropogenic chemicals (insecticides) disturb natural organic chemical communication in the plankton community. Environmental Pollution, 105, 137–142.

    Article  CAS  Google Scholar 

  • Hanazato, T. (2001). Pesticide effects on freshwater zooplankton: an ecological perspective. Environmental Pollution, 112, 1–10.

    Article  CAS  Google Scholar 

  • Hanazato, T., & Dodson, S. I. (1992). Complex effects of a kairomone of Chaoborus and an insecticide on Daphnia pulex. Journal of Plankton Research, 14(12), 1743–1755.

    Article  CAS  Google Scholar 

  • Hanazato, T., & Dodson, S. I. (1993). Morphological responses of four species of cyclomorphic Daphnia to a short-term exposure to the insecticide carbaryl. Journal of Plankton Research, 15(9), 1087–1095.

    Article  CAS  Google Scholar 

  • Hanazato, T., & Dodson, S. I. (1995). Synergistic effects of low oxygen concentration, predator kairomone, and a pesticide on the cladoceran Daphnia pulex. Limnology and Oceanography, 40(4), 700–709.

    Article  CAS  Google Scholar 

  • Harmon, S. M., & Wiley, F. E. (2011). Effects of pollution on freshwater organisms. Water Environment Research, 83(10), 1733–1788.

    Article  CAS  Google Scholar 

  • Jergentz, S., Mugni, H., Bonetto, C., & Schulz, R. (2005). Assessment of insecticide contamination in runoff and stream water of small agricultural streams in the main soybean area of Argentina. Chemosphere, 61, 817–826.

    Article  CAS  Google Scholar 

  • José de Paggi, S. B., & Devercelli, M. (2011). Land use and basin characteristics determine the composition and abundance of the microzooplankton. Water Air and Soil Pollution, 218, 93–108.

    Article  Google Scholar 

  • Klaschka, U. (2008). The infochemical effect—a new chapter in ecotoxicology. Environmental Science and Pollution Research, 15(6), 452–462.

    Article  CAS  Google Scholar 

  • Lass, S., & Spaak, P. (2003). Chemically induced anti-predator defences in plankton: a review. Hydrobiologia, 491, 221–239.

    Article  Google Scholar 

  • McCormick, P. V., & Cairns, J. (1997). Algal indicators of aquatic ecosystem condition and change. In W. Wuncheng (Ed.), Plants for Environmental Studies (pp. 177–208). New York: Lewish Publishers.

    Chapter  Google Scholar 

  • Milam, C. D., Farris, J. L., Dwyer, F. J., & Hardesty, D. K. (2005). Acute toxicity of six freshwater mussel species (Glochidia) to six chemicals: implications for Daphnids and Utterbackia imbecillis as surrogates for protection of freshwater mussels (Unionidae). Archives of Environmental Contamination and Toxicology, 48, 166–173.

    Article  CAS  Google Scholar 

  • Ohman, M. D. (1988). Behavioral responses of zooplankton to predation. Bulletin of Marine Science, 43(3), 530–550.

    Google Scholar 

  • Pérez, G. L., Miranda, L., Vera, M. S. (2011). Effects of herbicide glyphosate and glyphosate-based formulations on aquatic ecosystems. INTECH Open Access Publisher.

  • Peruzzo, P. J., Porta, A. A., & Ronco, A. E. (2008). Levels of glyphosate in surface waters, sediments and soils associated with direct sowing soybean cultivation in north pampasic region of Argentina. Environmental Pollution, 156, 61–66.

    Article  CAS  Google Scholar 

  • Preston, B. J., Cecchine, G., & Snell, T. W. (1999). Effects of pentachlorophenol on predator avoidance behavior of the rotifer Brachionus calyciflorus. Aquatic Toxicology, 44, 201–212.

    Article  CAS  Google Scholar 

  • Relyea, R. A. (2009). A cocktail of contaminants: how mixtures of pesticides at low concentrations affect aquatic communities. Oecologia, 159(2), 363–376.

    Article  Google Scholar 

  • Relyea, R., & Hoverman, J. (2006). Assessing the ecology in ecotoxicology: a review and synthesis in freshwater systems. Ecology Letters, 9(10), 1157–1171.

    Article  Google Scholar 

  • Rico-Martínez, R., Pérez-Legaspi, I. A., Alvarado-Flores, J., Retes-Pruneda, J. L., Arias-Almeida, J. C. (2012). Adverse effects of herbicides on freshwater zooplankton in Hasaneen MN (ed) Herbicides—properties, synthesis and control of weeds. INTECH Open Access Publisher, pp. 405-434.

  • Rose, R. M., Warne, M. S. J., & Lim, R. P. (2001). Factors associated with fish modify life history traits of the cladoceran Ceriodaphnia dubia. Journal of Plankton Research, 23(1), 11–17.

    Article  Google Scholar 

  • Sakamoto, M., Chang, K. H., & Hanazato, T. (2006). Inhibition of development of anti-predator morphology in the small cladoceran Bosmina by an insecticide: impact of an anthropogenic chemical on prey–predator interactions. Freshwater Biology, 51(10), 1974–1983.

    Article  CAS  Google Scholar 

  • Sarikaya, R., & Yılmaz, M. (2003). Investigation of acute toxicity and the effect of 2, 4-D (2, 4-dichlorophenoxyacetic acid) herbicide on the behavior of the common carp (Cyprinus carpio L., 1758; Pisces, Cyprinidae). Chemosphere, 52(1), 195–201.

    Article  CAS  Google Scholar 

  • Schindler, D. W. (1987). Detecting ecosystem responses to anthropogenic stress. Canadian Journal of Fisheries and Aquatic Sciences, Ottawa, 44, 6–25.

    Article  CAS  Google Scholar 

  • Sharp, A. A., & Stearns, D. E. (1997). Sublethal effects of cupric ion activity on the grazing behaviour of three calanoid copepods. Marine Pollution Bulletin, 34, 1041–1048.

    Article  CAS  Google Scholar 

  • Snell, T. W., Moffat, B. D., Janssen, C., & Persoone, G. (1991). Acute toxicity tests using rotifers. IV. Effects of cyst age, temperature and salinity on the sensitivity of Brachionus calyciflorus. Ecotoxicology and Environmental Safety, 21, 308–317.

    Article  CAS  Google Scholar 

  • Sokal, R. R., Rohlf, F. J. (1969). Biometría. Principios y métodos estadísticos en la investigación biológica. Ed. H. Blume, Madrid. 832 pp.

  • Soltani, N., Shropshire, C., & Sikkema, P. H. (2009). Sensitivity of winter wheat to preplant and preemergence glyphosate tankmixes. Crop Protection, 28(5), 449–452.

    Article  CAS  Google Scholar 

  • Stearns, S. C. (1992). The evolution of life histories (Vol. 249, 247 pp). Oxford: Oxford University Press.

    Google Scholar 

  • Stewart, C. L., Nurse, R. E., Van Eerd, L. L., Vyn, R. J., & Sikkema, P. H. (2011). Weed control, environmental impact, and economics of weed management strategies in glyphosate-resistant soybean. Weed Technology, 25(4), 535–541.

    Article  CAS  Google Scholar 

  • Sullivan, B. K., Buskey, E., Miller, D. C., & Ritacco, P. J. (1983). Effects of copper and cadmium on growth, swimming and predator avoidance in Eurytemora affinis (Copepoda). Marine Biology, 77, 299–306.

    Article  CAS  Google Scholar 

  • Williamson, C. E. (1987). Predator-prey interactions between omnivorous diaptomid copepods and rotifers: the role of prey morphology and behavior. Limnology and Oceanography, 32(1), 167–177.

    Article  Google Scholar 

Download references

Acknowledgments

We thank the anonymous reviewers for their valuable comments and suggestions.

Funding

This research was supported by the National University of the Littoral, (research Project CAI + D 2011: 50120110100215LI) and CONICET (PIP 2015: 11220150100395CO). V.A. was supported by the Universidad Nacional del Litoral through a research initiation scholarship (CIENTIBECA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victoria S. Andrade.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andrade, V.S., Gutierrez, M.F., Fantón, N.I. et al. Shifts in Zooplankton Behavior Caused by a Mixture of Pesticides. Water Air Soil Pollut 229, 107 (2018). https://doi.org/10.1007/s11270-018-3752-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-018-3752-y

Keywords

Navigation