Skip to main content

Advertisement

Log in

The Fate of 15N Tracer in Waterlogged Peat Cores from Two Central European Bogs with Different N Pollution History

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Under low nitrogen (N) input into rain-fed peat bogs, Sphagnum moss efficiently filters incoming N, preventing invasion of vascular plants and peat oxygenation. Elevated atmospheric N deposition, in combination with climatic warming, may cause retreat of bryophytes and degradation of peat deposits. There are concerns that higher emissions of greenhouse gases, accompanying peat thinning, will accelerate global warming. Breakthrough of deposited N below living moss has been quantified for two Central European peat bogs dominated by Sphagnum magellanicum. In the 1990s, the northern site, ZL, received three times more atmospheric N (> 40 kg ha−1 year−1) than the southern site, BS. Today, atmospheric N inputs at both sites are comparable (15 and 11 kg ha−1 year−1, respectively). Replicated peat cores were collected from the wet central segments of both study sites, 15N-NO3 tracer was applied on the moss surface, and the peat cores were incubated under water-logged conditions. After 40 weeks, the rate of downcore leaching of the 15N tracer was assessed. The recent history of high N pollution at ZL did not accelerate 15N penetration into deeper peat layers, relative to BS. At both sites, less than 3% of the 15N tracer reached the shallow depth of 9 cm. Analysis of control peat cores, along with a 210Pb chronology, revealed removal of the “excess” N from the ZL peat profiles prior to sampling. Following a decrease of atmospheric N pollution in the past two decades, efficient filtering of atmospheric N by Sphagnum at ZL has been renewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Biester, H., Knorr, K. H., Schellekens, J., Basler, A., & Hermanns, Y. M. (2014). Comparison of different methods to determine the degree of peat decomposition in peat bogs. Biogeosciences, 11(10), 2691–2707.

    Article  CAS  Google Scholar 

  • Blodau, C., Basiliko, N., Mayer, B., & Moore, T. R. (2006). The fate of experimentally deposited nitrogen in mesocosms from two Canadian peatlands. Science of the Total Environment, 364, 215–228.

    Article  CAS  Google Scholar 

  • Bohdalkova, L., Curik, J., Kubena, A. A., & Buzek, F. (2013). Dynamics of methane fluxes from two peat bogs in the Ore Mountains, Czech Republic. Plant Soil Environment, 1, 14–21.

    Google Scholar 

  • Bohdalkova, L., Novak, M., Stepanova, M., Fottova, D., Chrastny, V., Mikova, J., & Kubena, A. A. (2014a). The fate of atmospherically derived Pb in Central European catchments: insights from spatial and temporal pollution gradients and Pb isotope ratios. Environmental Science & Technology, 48(8), 4336–4343.

    Article  CAS  Google Scholar 

  • Bohdalkova, L., Novak, M., Buzek, F., Kreisinger, J., Bindler, R., Pazderu, K., & Pacherova, P. (2014b). The response of a mid- and high latitude peat bog to predicted climate change: methane production in a 12-month peat incubation. Mitigation and Adaptation Strategies for Global Change, 19(7), 997–1010.

    Article  Google Scholar 

  • Bragazza, L., & Limpens, J. (2004). Dissolved organic nitrogen dominates in European bogs under increasing atmospheric N deposition. Global Biogeochemical Cycles, 18(4), GB4018.

    Article  Google Scholar 

  • Bragazza, L., Tahvanainen, T., Kutnar, L., Rydin, H., Limpens, J., Hajek, M., et al. (2004). Nutritional constraints in ombrotrophic Sphagnum plants under increasing atmospheric nitrogen deposition in Europe. New Phytologist, 163(3), 609–616.

    Article  Google Scholar 

  • Bragazza, L., Limpens, J., Gerdol, R., Grosvernier, P., Hajek, M., Hajek, T., et al. (2005). Nitrogen concentration and δ15N signature of ombrotrophic Sphagnum mosses at different N deposition levels in Europe. Global Change Biology, 11(1), 106–114.

    Article  Google Scholar 

  • Bragazza, L., Freeman, C., Jones, T., Rydin, H., Limpens, J., Fenner, N., et al. (2006). Atmospheric nitrogen deposition promotes carbon loss from peat bogs. Proceedings of the National Academy of Sciences of the United States of America, 103(51), 19386–19389.

    Article  CAS  Google Scholar 

  • Breeuwer, A., Heijmans, M., Robroek, B. J. M., Limpens, J., & Berendse, F. (2008). The effect of increased temperature and nitrogen deposition on decomposition in bogs. Oikos, 117(8), 1258–1268.

    Article  CAS  Google Scholar 

  • Broder, T., Blodau, C., Biester, H., & Knorr, K. H. (2012). Peat decomposition records in three pristine ombrotrophic bogs in southern Patagonia. Biogeosciences, 9(4), 1479–1491.

    Article  CAS  Google Scholar 

  • Core Team, R. (2017). R: a language and environment for statistical computing. Vienna, Austria: R Foundation for statistical computing http://www.R-projetc.org.

    Google Scholar 

  • Chiwa, M., Sheppard, L. J., Leith, I. D., Leeson, S. R., Tang, Y. S., & Cape, J. N. (2016). Sphagnum can ‘filter’ N deposition, but effects on the plant and pore water depend on the N form. Science of the Total Environment, 559, 113–120.

    Article  CAS  Google Scholar 

  • Clymo, R. S., Turunen, J., & Tolonen, K. (1998). Carbon accumulation in peatland. Oikos, 81, 368–388.

    Article  Google Scholar 

  • Dise, N. B., Ashmore, M., Belyazid, S., Bleeker, A., Bobbink, R., de Vries, W., et al. (2011). Nitrogen as threat to European terrestrial biodiversity. In M. A. Sutton, C. M. Howard, J. W. Erisman, G. Billen, A. Bleeker, P. Grennfelt, H. van Grinsven, & B. Grizetti (Eds.), The European Nitrogen Assessment (pp. 463–494). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Dohnal, Z., Kunst, M., Mejstrik, V., Raucina, S., & Vydra, V. (1965). Czechoslovak Peatlands. Czechoslovakia: Czechoslovak Academy of Sciences.

    Google Scholar 

  • Erbanova, L., Novak, M., Fottova, D., & Dousova, B. (2008). Export of arsenic from forested catchments under easing atmospheric pollution. Environmental Science & Technology, 42(19), 7187–7192.

    Article  CAS  Google Scholar 

  • Esmeijer-Liu, A. J., Kurschner, W. M., Lotter, A. F., Verhoeven, J. T. A., & Goslar, T. (2012). Stable carbon and nitrogen isotopes in a peat profile are influenced by early stage diagenesis and changes in atmospheric CO2 and N deposition. Water Air and Soil Pollution, 223(5), 2007–2022.

    Article  CAS  Google Scholar 

  • Fisak, J., Tesar, M., Rezacova, D., Elias, V., Weignerova, V., & Fottova, D. (2002). Pollutant concentrations in fog and low cloud water at selected sites of the Czech Republic. Atmospheric Research, 64(1–4), 75–87.

    Article  CAS  Google Scholar 

  • Fottova, D. (1995). Regional evaluation of mass element fluxes - GEOMON network of small catchments. Environmental Monitoring and Assessment, 34(2), 215–221.

    Article  CAS  Google Scholar 

  • Fottova, D. (2003). Trends in sulphur and nitrogen deposition fluxes in the GEOMON network, Czech Republic, between 1994 and 2000. Water Air and Soil Pollution, 150(1–4), 73–87.

    Article  CAS  Google Scholar 

  • Fottova, D., & Skorepova, I. (1998). Changes in mass element fluxes and their importance for critical loads: GEOMON network, Czech Republic. Water Air and Soil Pollution, 105(1–2), 365–376.

    Article  CAS  Google Scholar 

  • Franzes, A. J., & Loiseau, P. (1999). The fate of mineral nitrogen in a fen with Sphagnum fallax klinggr. and Carex rostrata stokes (Massif central, France). Canadian Journal of Botany, 77, 1136–1143.

    Google Scholar 

  • Fraser, C. J. D., Roulet, N. T., & Lafleur, M. (2001). Groundwater flow patterns in a large peatland. Journal of Hydrology, 246(1–4), 142–154.

    Article  CAS  Google Scholar 

  • Fritz, C., Lamers, L. P. M., Riaz, M., van den Berg, L. J. L., & Elzenga, T. J. T. M. (2014). Sphagnum mosses - masters of efficient N-uptake while avoiding intoxication. PLoS One, 9(1), 1–11.

    Article  Google Scholar 

  • Gabor, R. S., Hall, S. J., Eiriksson, D. P., Jameel, Y., Millington, M., Stout, T., et al. (2017). Persistent urban influence on surface water quality via impacted groundwater. Environmental Science & Technology, 51(17), 9477–9487.

    Article  CAS  Google Scholar 

  • Galloway, J. N., Dentener, F. J., Capone, D. G., Boyer, E. W., Howarth, R. W., Sitzinger, S. P., et al. (2004). Nitrogen cycles: past, present, future. Biogeochemistry, 70, 153–226.

    Article  CAS  Google Scholar 

  • Gorham, E. (1991). Northern peatlands: role in the carbon cycle and probable responses to climatic warming. Ecological Applications, 1, 182–195.

    Article  Google Scholar 

  • Granath, G., Limpens, J., Posch, M., Mücher, S., & de Vries, W. (2014). Spatio-temporal trends of nitrogen deposition and climate effects on Sphagnum productivity and European peatlands. Environmental Pollution, 187, 73–80.

    Article  CAS  Google Scholar 

  • Harmens, H., Schnyder, E., Thoni, L., Cooper, D. M., Mills, G., Leblond, S., et al. (2014). Relationship between site-specific nitrogen concentrations in mosses and measured wet bulk atmospheric nitrogen deposition across Europe. Environmental Pollution, 194, 50–59.

    Article  CAS  Google Scholar 

  • Heijmans, M. M. P. D., Klees, H., de Visser, W., & Berendse, F. (2002). Effects of increased nitrogen deposition on the distribution of 15N-labeled nitrogen between Sphagnum and vascular plants. Ecosystems, 5, 500–508.

    Article  CAS  Google Scholar 

  • Högberg, M. (1997). Tansley review no. 95. 15N abundance in soil-plant system. New Phytologist, 137, 179–203.

    Article  Google Scholar 

  • Hunova, I., Maznova, J., & Kurfurst, P. (2014). Trends in atmospheric deposition fluxes of sulphur and nitrogen in Czech forests. Environmental Pollution, 184, 668–675.

    Article  CAS  Google Scholar 

  • Inglett, P. W., Reddy, K. R., Newman, S., & Lorenzen, B. (2007). Increased soil stable nitrogen isotopic ratio following phosphorus enrichment: historical patterns and tests of two hypotheses in a phosphorus-limited wetland. Oecologia, 153(1), 99–109.

    Article  CAS  Google Scholar 

  • Jirousek, M., Hajek, M., & Bragazza, L. (2011). Nutrient stoichiometry in Sphagnum along a nitrogen deposition gradient in highly polluted region of Central-East Europe. Environmental Pollution, 159(2), 585–590.

    Article  CAS  Google Scholar 

  • Johnson, D. W., & Lindberg, S. E. (Eds.). (1992). Atmospheric deposition and forest nutrient cycling. Berlin Heidelberg New York: Springer.

    Google Scholar 

  • Jones, M. C., Peteet, D. M., & Sambrotto, R. (2010). Late-glacial and Holocene δ15N and δ13C variation from a Kenai Peninsula, Alaska peatland. Palaeogeography Palaeoclimatology Palaeoecology, 293(1–2), 132–143.

    Article  Google Scholar 

  • Kalbitz, K., & Geyer, S. (2002). Different effects of peat degradation on dissolved organic carbon and nitrogen. Organic Geochemistry, 33(3), 319–326.

    Article  CAS  Google Scholar 

  • Kohzu, A., Matsui, K., Yamada, T., & Sugimoto, A. (2003). Significance of rooting depth in mire plants: evidence from natural 15N abundance. Ecological Research, 18(3), 257–266.

    Article  CAS  Google Scholar 

  • Kopacek, J., & Posch, M. (2011). Anthropogenic nitrogen emissions during the Holocene and their possible effect on remote ecosystems. Global Biogeochemical Cycles, 25(GB2017), 1–16.

    Google Scholar 

  • Kopacek, J., & Vesely, J. (2005). Sulfur and nitrogen emissions in the Czech Republic and Slovakia from 1850 till 2000. Atmospheric Environment, 39(12), 2179–2188.

    Article  CAS  Google Scholar 

  • Kopacek, J., Vesely, J., & Stuchlik, E. (2001). Sulphur and nitrogen fluxes and budgets in the Bohemian Forest and Tatra Mountains during the Industrial Revolution (1850–2000). Hydrology and Earth System Sciences, 5(3), 391–405.

    Article  Google Scholar 

  • Kruger, J. P., Leifeld, J., Glatzel, S., Szidat, S., & Alewell, C. (2015). Biogeochemical indicators of peatland degradation—a case study of a temperate bog in northern Germany. Biogeosciences, 12(10), 2861–2871.

    Article  Google Scholar 

  • Kuhry, P., & Vitt, D. H. (1996). Fossil carbon/nitrogen ratios as a measure of peat decomposition. Ecology, 77, 271–275.

    Article  Google Scholar 

  • Lamers, L. P. M., Bobbing, R., & Roelofs, J. G. M. (2000). Natural nitrogen filter fails in polluted raised bogs. Global Change Biology, 6, 583–586.

    Article  Google Scholar 

  • Larmola, T., Leppanen, S. M., Tuitila, E.-S., Aarva, M., Merila, P., Fritze, H., & Tiirola, M. (2014). Methanotrophy induces nitrogen fixation during peatland development. Proceedings of the National Academy of Sciences of the United States of America, 112(2), 734–739.

    Article  Google Scholar 

  • Li, Y. H., & Vitt, D. H. (1997). Patterns of retention and utilization of aerially deposited nitrogen in boreal peatlands. Ecoscience, 4, 106–116.

    Article  Google Scholar 

  • Limpens, J., Berendse, F., & Klees, H. (2003). N deposition affects N availability in interstitial water, growth of Sphagnum and invasion of vascular plants in bog vegetation. New Phytologist, 157, 339–347.

    Article  Google Scholar 

  • Limpens, J., Berendse, F., & Klees, H. (2004). How P affects the impact of N deposition on Sphagnum and vascular plants in bogs. Ecosystems, 7, 793–804.

    Article  CAS  Google Scholar 

  • Manninen, S., Kivimäki, S., Leith, I. D., Leeson, S. R., & Sheppard, L. J. (2016). Nitrogen deposition does not enhance Sphagnum decomposition. Science of the Total Environment, 571, 314–322.

    Article  CAS  Google Scholar 

  • Mihaljevic, M., Zuna, M., Ettler, V., Chrastny, V., Sebek, O., Strnad, L., & Kyncl, T. (2008). A comparison of tree rings and peat deposit geochemical archives in the vicinity of a lead smelter. Water Air and Soil Pollution, 188(1–4), 311–321.

    Article  CAS  Google Scholar 

  • Mihaljevic, M., Zuna, M., Ettler, V., Sebek, O., Strnad, L., & Golias, V. (2006). Lead fluxes, isotopic and concentration profiles in a peat deposit near a lead smelter (Pribram, Czech Republic). Science of the Total Environment, 372(1), 334–344.

    Article  CAS  Google Scholar 

  • Nadelhoffer, K., & Fry, B. (1988). Controls on natural nitrogen-15 and carbon-13 abundances in forest soil organic matter. Soil Science Society of America Journal, 52, 1633–1640.

    Article  Google Scholar 

  • Nadelhoffer, K., Shaver, G., Fry, B., Giblin, A., Johnson, L., & McKane, R. (1996). N-15 natural abundances and N use by tundra plants. Oecologia, 107(3), 386–394.

    Article  CAS  Google Scholar 

  • Nordbakken, J. F., Ohlson, M., & Högberg, P. (2003). Boreal bog plants: Nitrogen sources and uptake of recently deposited nitrogen. Environmental Pollution, 126, 191–200.

    Article  CAS  Google Scholar 

  • Novak, M., Bottrell, S. H., Fottova, D., Buzek, F., Groscheova, H., & Zak, K. (1996). Sulfur isotope signals in forest soils of Central Europe along an air-pollution gradient. Environmental Science & Technology, 30(12), 3473–3476.

    Article  CAS  Google Scholar 

  • Novak, M., Buzek, F., & Adamova, M. (1999). Vertical trends in δ13C, δ15N and δ34S ratios in bulk Sphagnum peat. Soil Biology & Biogeochemistry, 31(9), 1343–1346.

    Article  CAS  Google Scholar 

  • Novak, M., Buzek, F., Jackova, I., Stepanova, M., & Prechova, E. (2017). Isotope constraints on microbial N2-fixation in ombrotrophic peat bogs. Annual Report, Czech Geological Survey, Prague. Grant project no. 16-18079S (Czech Science Foundation).

  • Novak, M., Emmanuel, S., Vile, M. A., Erel, Y., Veron, A., Paces, T., et al. (2003). Origin of lead in eight Central European peat bogs determined from isotope ratios, strengths and operation times of regional pollution sources. Environmental Science & Technology, 37, 437–445.

    Article  CAS  Google Scholar 

  • Novak, M., Erel, Y., Zemanova, L., Bottrell, S. H., & Adamova, M. (2008). A comparison of lead pollution record in Sphagnum peat with known historical Pb emission rates in the British Isles and the Czech Republic. Atmospheric Environment, 42, 8997–9006.

    Article  CAS  Google Scholar 

  • Novak, M., Gebauer, G., Thoma, M., Curik, J., Stepanova, M., Jackova, I., et al. (2015b). Denitrification at two nitrogen-polluted, ombrotrophic Sphagnum bogs in Central Europe: insights from porewater N2O-isotope profiles. Soil Biology & Biogeochemistry, 81, 48–57.

    Article  CAS  Google Scholar 

  • Novak, M., Jackova, I., Curik, J., Stepanova, M., Veselovsky, F., Buzek, F., et al. (2016). Contrasting δ15N values of atmospheric deposition and Sphagnum peat bogs: N fixation as a possible cause. Ecosystems, 19, 1037–1050.

    Article  CAS  Google Scholar 

  • Novak, M., Stepanova, M., Jackova, I., Vile, M. A., Wieder, R. K., Buzek, F., et al. (2014). Isotopic evidence for nitrogen mobility in peat bogs. Geochimica et Cosmochimica Acta, 133, 351–361.

    Article  CAS  Google Scholar 

  • Novak, M., Veselovsky, F., Curik, J., Stepanova, M., Fottova, D., Prechova, E., & Myska, O. (2015a). Nitrogen input into Sphagnum bogs via horizontal deposition: an estimate for N-polluted high-elevation sites. Biogeochemistry, 123(1–2), 307–312.

    Article  CAS  Google Scholar 

  • Novak, M., Wieder, R. K., & Schell, W. R. (1994). Sulfur during early diagenesis in Sphagnum peat: insights from δ34S ratio profiles in 210Pb-dated peat cores. Limnology and Oceanography, 39(5), 1172–1185.

    Article  CAS  Google Scholar 

  • Novak, M., Zemanova, L., Buzek, F., Jackova, I., Adamova, M., Komarek, A., et al. (2010). The effect of a reciprocal peat transplant between two contrasting Central European sites on C cycling and C isotope ratios. Biogeosciences, 7(3), 921–932.

    Article  CAS  Google Scholar 

  • Oulehle, F., Chuman, T., Hruska, J., Kram, P., McDowell, W. H., Myska, O., et al. (2017). Recovery from acidification alters concentrations and fluxes of solutes from Czech catchments. Biogeochemistry, 132(3), 251–272.

    Article  CAS  Google Scholar 

  • Oulehle, F., Evans, C. D., Hofmeister, J., Krejci, R., Tahovska, K., Persson, T., et al. (2011). Major changes in forest carbon and nitrogen cycling caused by declining sulphur deposition. Global Change Biology, 17(10), 3115–3129.

    Article  Google Scholar 

  • Oulehle, F., Kopacek, J., Chuman, T., Cernohous, V., Hunova, I., Hruska, J., et al. (2016). Predicting sulphur and nitrogen deposition using a simple statistical method. Atmospheric Environment, 140, 456–468.

    Article  Google Scholar 

  • Pinheiro, J. C., & Bates, D. (2000). Mixed-effects models in S and S-Plus. New York: Springer-Verlag.

    Book  Google Scholar 

  • Pinheiro, J. C., Bates, D., DebRoy, S., Sarkar, D., & R Core Team. (2016). Nlme: linear and nonlinear mixed effect models. R package version, 3, 1–128 http://CRAN.R-project.org/package=nlme.

    Google Scholar 

  • Pinsonneault, A. J., Moore, T. R., & Roulet, N. T. (2016). Effects of long-term fertilization on peat stoichiometry and associated microbial enzyme activity in an ombrotrophic bog. Biogeochemistry, 129(1–2), 149–164.

    Article  CAS  Google Scholar 

  • Sheppard, L. J., Leith, I. D., Leeson, S. R., van Dijk, N., Field, C., & Levy, P. (2013). Fate of N in a peatland, Whim bog: immobilization in the vegetation and peat, leakage into pore water and losses as N2 depend on the form of N. Biogeosciences, 10, 149–160.

    Article  Google Scholar 

  • Song, Y., Song, C., Meng, H., Swarzenski, C. M., Wang, X., & Tan, W. (2017). Nitrogen additions affect litter quality and soil biochemical properties in a peatland of Northeast China. Ecological Engineering, 100, 175–185.

    Article  Google Scholar 

  • Sorrell, B. K., Chague-Goff, C., Basher, L. M., & Partridge, T. R. (2011). N:P ratios, δ15N fractionation and nutrient resorption along a nitrogen to phosphorus limitation gradient in an oligotrophic wetland complex. Aquatic Botany, 94(2), 93–101.

    Article  CAS  Google Scholar 

  • Tfaily, M. M., Cooper, W. T., Kostka, J. E., Chanton, P. R., Schadt, C. W., Hanson, P. J., et al. (2014). Organic matter transformations in the peat column at Marcell Experimental Forest: humification and vertical stratification. Journal of Geophysical Research – Biogeosciences, 119(4), 661–675.

    Article  CAS  Google Scholar 

  • Van den Elzen, E., Kox, M. A. R., Harpenslager, S. F., Hensgens, G., Fritz, C., Jetten, M. S. M., et al. (2017). Symbiosis revisited: phosphorus and acid buffering stimulate N2 fixation but not Sphagnum growth. Biogeosciences, 14(5), 1111–1122.

    Article  Google Scholar 

  • Vile, M. A., Wieder, R. K., & Novak, M. (2000). 200 years of Pb deposition throughout the Czech Republic: patterns and sources. Environmental Science & Technology, 34, 12–21.

    Article  CAS  Google Scholar 

  • Vile, M. A., Wieder, R. K., Zivkovic, T., Scott, K. D., Vitt, D. H., Hartsock, J. A., et al. (2014). N2-fixation by methanotrophs sustains carbon and nitrogen accumulation in pristine peatlands. Biogeochemistry, 121(2), 317–328.

    Article  CAS  Google Scholar 

  • Wieder, R. K., & Vitt, D. H. (Eds.). (2006). Boreal peatland ecosystems. Berlin Heidelberg New York: Springer.

    Google Scholar 

  • Williams, B. L., Silcock, D. J., & Young, M. (1999). Seasonal dynamics of N in two Sphagnum moss species and the underlying peat treated with 15NH4 15NO3. Biogeochemistry, 45, 285–302.

    Google Scholar 

  • Xing, Y., Bubier, J., Moore, T. R., Murphy, M., Basiliko, N., Wendel, S., & Blodau, C. (2011). The fate of 15N-nitrate in a northern peatland impacted by long term experimental nitrogen, phosphorus and potassium fertilization. Biogeochemistry, 103, 281–296.

    Article  CAS  Google Scholar 

  • Zając, K., & Blodau, C. (2016). The fate of 15N-nitrate in mesocosms from five European peatlands differing in long-term nitrogen deposition rate. Biogeosciences, 13, 707–722.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dr. Andrea Kucerova of the Botanical Institute of the Czech Academy of Sciences, Trebon, for a consultation on phosphorus cycling.

Funding

This work was funded by the Czech Science Foundation, Project No. 16-18079S to MN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Novak.

Electronic Supplementary Material

ESM 1

(DOCX 19 kb)

ESM 2

(DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Novak, M., Stepanova, M., Buzek, F. et al. The Fate of 15N Tracer in Waterlogged Peat Cores from Two Central European Bogs with Different N Pollution History. Water Air Soil Pollut 229, 70 (2018). https://doi.org/10.1007/s11270-018-3731-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-018-3731-3

Keywords

Navigation