Skip to main content
Log in

Evaluating Nonlinear Sorption of Four Substituted Phenols to Agriculture Soils Using Expanded Polyparameter Linear Free Energy Relationship

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Nonlinear sorption of substituted phenols (degradation products of several pesticides) onto soils was often observed. This sorption nonlinearity at low solute concentration ranges could result in higher soil organic carbon-water distribution coefficient (K oc) values than those predicted by their hydrophobicity (K ow). In this study, nonlinear sorption characteristic of four substituted phenols (2,6-dimethylphenol, 2-chlorophenol, 2-nitrophenol, and 2,4-dichlorophenol) onto two agricultural soils was investigated. The sorption nonlinearity gradually approached apparent saturation at low solute activity ranges (e.g., a i < 0.01). At high a i ranges, linear sorption was observed. Thus, partition and adsorption of solutes were successfully evaluated by a dual-mode sorption model. The concentrations of substituted phenols in the environment are pretty low (e.g., usually lower than 1 mg/L). According to our results, nonlinear adsorption is dominant in such low concentration ranges in the environment. To predict varied log K oc values resulted from nonlinear adsorption, especially for low a i range, an expanded polyparameter linear free energy relationship (pp-LFER) is established: log K oc = [(1.829 ± 0.488) + (3.481 ± 0.462) log a i)]E+ [(− 4.307 ± 0.466) log a i]S+ [(− 0.876 ± 0.138) log a i]A+ [(− 0.086 ± 0.529) + (1.209 ± 0.218) log a i]B+ (6.280 ± 0.649)V – (6.814 ± 0.917) (E, the excess molar refraction; S, the dipolarity/polarizability parameter; A, the solute H-bond acidity; B, the solute H-bond basicity; and V, the molar volume). This model can provide a better prediction (within 0.3 log unit) than previous models. This study provides essential parameters for predicting and understanding the environmental behavior of substituted phenols in agricultural soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abraham, M. H. (1993). Scales of solute hydrogen-bonding: Their construction and application to physicochemical and biochemical processes. Chemical Society Reviews., 22, 73–83.

    Article  CAS  Google Scholar 

  • Abraham, M. H., Ibrahim, A., & Zissimos, A. M. (2004). Determination of sets of solute descriptors from chromatographic measurements. Journal of Chromatography A., 1037, 29–47.

    Article  CAS  Google Scholar 

  • Accardi-Dey, A., & Gschwend, P. M. (2002). Assessing the combined roles of natural organic matter and black carbon as sorbents in sediments. Environmental Science & Technology., 36, 21–29.

    Article  CAS  Google Scholar 

  • Aeschbacher, M., Brunner, S. H., Schwarzenbach, R. P., & Sander, M. (2012). Assessing the effect of humic acid redox state on organic pollutant sorption by combined electrochemical reduction and sorption experiments. Environmental Science & Technology., 46, 3882–3890.

    Article  CAS  Google Scholar 

  • Allen-King, R. M., Grathwohl, P., & Ball, W. P. (2002). New modeling paradigms for the sorption of hydrophobic organic chemicals to heterogeneous carbonaceous matter in soils, sediments, and rocks. Advances in Water Resources., 25, 985–1016.

    Article  CAS  Google Scholar 

  • Apul, O. G., Wang, Q., Shao, T., Rieck, J. R., & Karanfil, T. (2013). Predictive model development for adsorption of aromatic contaminants by multi-walled carbon nanotubes. Environmental Science & Technology., 47, 2295–2303.

    Article  CAS  Google Scholar 

  • Boyd, S. A. (1982). Adsorption of substituted phenols by soil. Soil Science., 136, 337–343.

    Article  Google Scholar 

  • Chen, B. L., Johnson, E. J., Chefetz, B., Zhu, L. Z., & Xing, B. S. (2005). Sorption of polar and nonpolar aromatic organic contaminants by plant cuticular materials: role of polarity and accessibility. Environmental Science & Technology., 39, 6138–6146.

    Article  CAS  Google Scholar 

  • Chiou, C. T., & Kile, D. E. (1994). Effects of polar and nonpolar groups on the solubility of organic compounds in soil organic matter. Environmental Science & Technology., 28, 1139–1144.

    Article  CAS  Google Scholar 

  • Chiou, C. T., & Kile, D. E. (1998). Deviations from sorption linearity on soils of polar and nonpolar organic compounds at low relative concentrations. Environmental Science & Technology., 32, 338–343.

    Article  CAS  Google Scholar 

  • Chiou, C. T., Cheng, J., Hung, W.-N., Chen, B., & Lin, T.-F. (2015). Resolution of adsorption and partition components of organic compounds on black carbons. Environmental Science & Technology., 49, 9116–9123.

    Article  CAS  Google Scholar 

  • Cornelissen, G., Gustafsson, O., Bucheli, T. D., Jonker, M. T. O., Koelmans, A. A., & Van Noort, P. C. M. (2005). Extensive sorption of organic compounds to black carbon, coal, and kerogen in sediments and soils: mechanisms and consequences for distribution, bioaccumulation, and biodegradation. Environmental Science & Technology., 39, 6881–6895.

    Article  CAS  Google Scholar 

  • Dolatto, R. G., Messerschmidt, I., Pereira, B. F., Martinazzo, R., & Abate, G. (2016). Preconcentration of polar phenolic compounds from water samples and soil extract by liquid-phase microextraction and determination via liquid chromatography with ultraviolet detection. Talanta, 148, 292–300.

    Article  CAS  Google Scholar 

  • Endo, S., & Goss, K. U. (2014). Applications of polyparameter linear free energy relationships in environmental chemistry. Environmental Science & Technology., 48, 12477–12491.

    Article  CAS  Google Scholar 

  • Endo, S., Grathwohl, P., Haderlein, S. B., & Schmidt, T. C. (2009). LFERs for soil organic carbon-water distribution coefficients (K-OC) at environmentally relevant sorbate concentrations. Environmental Science & Technology., 43, 3094–3100.

    Article  CAS  Google Scholar 

  • Fenner, K., Canonica, S., Wackett, L. P., & Elsner, M. (2013). Evaluating pesticide degradation in the environment: blind spots and emerging opportunities. Science, 341, 752–758.

    Article  CAS  Google Scholar 

  • Frankki, S., & Skyllberg, U. (2006). Chlorophenol binding to dissolved and particulate soil organic matter determined in controlled equilibrium systems. European Journal of Soil Science., 57, 655–664.

    Article  CAS  Google Scholar 

  • Fytianos, K., Voudrias, E., & Kokkalis, E. (2000). Sorption-desorption behaviour of 2,4-dichlorophenol by marine sediments. Chemosphere, 40, 3–6.

    Article  CAS  Google Scholar 

  • Gao, P., Feng, Y., Zhang, Z., Wang, C., Liu, J., & Ren, N. (2012). Kinetic and thermodynamic studies of phenolic compounds’ adsorption on river sediment. Soil & Sediment Contamination., 21, 625–639.

    Article  CAS  Google Scholar 

  • Goss, K. U., & Schwarzenbach, R. P. (2001). Linear free energy relationships used to evaluate equilibrium partitioning of organic compounds. Environmental Science & Technology., 35, 1–9.

    Article  CAS  Google Scholar 

  • Graber, E. R., & Borisover, M. (2005). Exploring organic compound interactions with organic matter: the thermodynamic cycle approach. Colloids and Surfaces a-Physicochemical and Engineering Aspects., 265, 11–22.

    CAS  Google Scholar 

  • Haderlein, S. B., & Schwarzenbach, R. P. (1993). Adsorption of substituted nitrobenzenes and nitrophenols to mineral surfaces. Environmental Science & Technology., 27, 316–326.

    Article  CAS  Google Scholar 

  • Han, C., Zhang, H., Gu, Q., Guo, G., Li, Y., & Li, F. (2013). Toluene sorption behavior on soil organic matter and its composition using three typical soils in China. Environmental Earth Sciences., 68, 741–747.

    Article  CAS  Google Scholar 

  • Han, L. F., Sun, K., Jin, J., Wei, X., Xia, X. H., Wu, F. C., Gao, B., & Xing, B. S. (2014). Role of structure and microporosity in phenanthrene sorption by natural and engineered organic matter. Environmental Science & Technology., 48, 11227–11234.

    Article  CAS  Google Scholar 

  • Khan, Z., & Anjaneyulu, Y. (2005). Influence of soil components on adsorption-desorption of hazardous organics-development of low cost technology for reclamation of hazardous waste dumpsites. Journal of Hazardous Materials., 118, 161–169.

    Article  CAS  Google Scholar 

  • Li, B., Hu, X., Liu, R., Zeng, P., & Song, Y. (2015). Occurrence and distribution of phthalic acid esters and phenols in Hun River watersheds. Environmental Earth Sciences., 73, 5095–5106.

    Article  CAS  Google Scholar 

  • Liu, J.-C., Tzou, Y.-M., Lu, Y.-H., Wu, J.-T., Cheng, M.-P., & Wang, S.-L. (2010). Enhanced chlorophenol sorption of soils by rice-straw-ash amendment. Journal of Hazardous Materials., 177, 692–696.

    Article  CAS  Google Scholar 

  • Lu, Z., MacFarlane, J. K., & Gschwend, P. M. (2016). Adsorption of organic compounds to diesel soot: frontal analysis and polyparameter linear free-energy relationship. Environmental Science & Technology., 50, 285–293.

    Article  CAS  Google Scholar 

  • Nguyen, T. H., Goss, K.-U., & Ball, W. P. (2005). Polyparameter linear free energy relationships for estimating the equilibrium partition of organic compounds between water and the natural organic matter in soils and sediments. Environmental Science & Technology., 39, 913–924.

    Article  CAS  Google Scholar 

  • Plata, D. L., Hemingway, J. D., & Gschwend, P. M. (2015). Polyparameter linear free energy relationship for wood char-water sorption coefficients of organic sorbates. Environmental Toxicology and Chemistry., 34, 1464–1471.

    Article  CAS  Google Scholar 

  • Sagbas, S., Kantar, C., & Sahiner, N. (2014). Preparation of poly(humic acid) particles and their use in toxic organo-phenolic compound removal from aqueous environments. Water Air & Soil Pollution., 225, 1–10.

    Article  CAS  Google Scholar 

  • Schenzel, J., Goss, K. U., Schwarzenbach, R. P., Bucheli, T. D., & Droge, S. T. J. (2012). Experimentally determined soil organic matter–water sorption coefficients for different classes of natural toxins and comparison with estimated numbers. Environmental Science & Technology., 46, 6118–6126.

    Article  CAS  Google Scholar 

  • Schwarzenbach, R. P., & Westall, J. (1981). Transport of nonpolar organic compounds from surface water to groundwater. Laboratory sorption studies. Environmental Science & Technology., 15, 1360–1367.

    Article  CAS  Google Scholar 

  • Schwarzenbach, R. P., Escher, B. I., Fenner, K., Hofstetter, T. B., Johnson, C. A., von Gunten, U., & Wehrli, B. (2006). The challenge of micropollutants in aquatic systems. Science, 313, 1072–1077.

    Article  CAS  Google Scholar 

  • Selig, H., Keinath, T. M., & Weber, W. J. (2003). Sorption and manganese-induced oxidative coupling of hydroxylated aromatic compounds by natural geosorbents. Environmental Science & Technology., 37, 4122–4127.

    Article  CAS  Google Scholar 

  • Shih, Y. H., & Gschwend, P. M. (2009). Evaluating activated carbon-water sorption coefficients of organic compounds using a linear solvation energy relationship approach and sorbate chemical activities. Environmental Science & Technology., 43, 851.

    Article  CAS  Google Scholar 

  • Tremolada, P., Guazzoni, N., Smillovich, L., Moia, F., & Comolli, R. (2012). The effect of the organic matter composition on POP accumulation in soil. Water Air and Soil Pollution., 223, 4539–4556.

    Article  CAS  Google Scholar 

  • Xiao, J., Xie, Y., Han, Q., Cao, H., Wang, Y., Nawaz, F., & Duan, F. (2016). Superoxide radical-mediated photocatalytic oxidation of phenolic compounds over Ag+/TiO2: influence of electron donating and withdrawing substituents. Journal of Hazardous Materials., 304, 126–133.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study is supported by the National Natural Science Foundation of China (No. 41472231) and the Fundamental Research Funds for the Central Universities (2652017182) . We thank the anonymous reviewer for valuable comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erping Bi.

Electronic supplementary material

ESM 1

(DOCX 245 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, C., Bi, E. Evaluating Nonlinear Sorption of Four Substituted Phenols to Agriculture Soils Using Expanded Polyparameter Linear Free Energy Relationship. Water Air Soil Pollut 228, 414 (2017). https://doi.org/10.1007/s11270-017-3596-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-017-3596-x

Keywords

Navigation