Skip to main content
Log in

Removal of Microcystin-LR from Drinking Water Using a System Involving Oxidation and Adsorption

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The aim of the present study was to evaluate the efficiency of removal of microcystin-LR from drinking water using a three-stage bench-scale treatment comprising Fenton oxidation/coagulation/flocculation/sedimentation, filtration through a sand column (15 cm bed), and adsorption onto a granular activated carbon (GAC) column with 15-cm (GAC1) or 20-cm bed (GAC2). Optimal first-stage conditions were determined to be FeSO4∙7H2O 0.054 mM, H2O2 0.162 mM, coagulation pH 8.4, sedimentation time 15 min, and flow rate 2 L h−1. Under these conditions, water turbidity was reduced from 5.8 to 3.0 uT, apparent color from 115 to 81 uH, and the concentration of microcystin-LR from 18.52 to 9.59 μg L−1. Column GAC2 was more efficient than GAC1, as shown by the higher adsorption capacity (4.15 μg g−1) and lower carbon usage rate (1.70 g L−1). Microcystin breakthrough occurred after 2 h of operation with GAC1 column and after 6 h with GAC2 column, and the greater efficiency of the latter column was confirmed by the high qe (4.15 μg g−1) and low CUR (1.70 g L−1) values attained. The results demonstrate that adsorption on a GAC column plays an essential role in reducing the concentration of microcystin-LR to levels compatible with current legislation. By-products of the Fenton oxidation of microcystin-LR were analyzed by mass spectrometry, and the ADDA amino acid present in the analyte was identified from its characteristic fragment at m/z 135. It is concluded that the combination of Fenton oxidation and adsorption on a GAC column represents a viable option for purifying eutrophic water containing high concentrations of microcystin-LR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • American Public Health Association. (2005). Standard methods for the examination of water and wastewater (21st ed.). Washington: APHA/WEF/AWWA.

    Google Scholar 

  • American Society for Testing and Materials. (1993). ASTM D3922-89. Standard practice for estimating the operating performance of granular activated carbon for removal of soluble pollutants from water. West Conshohocken: ASTM International.

    Google Scholar 

  • American Society for Testing and Materials. (2008). ASTM D6586-03. Standard practice for the prediction of contaminant adsorption on GAC in aqueous systems using rapid small-scale column tests. West Conshohocken: ASTM International.

    Google Scholar 

  • Antoniou, M. G., De La Cruz, A. A., & Dionysiou, D. D. (2010). Degradation of microcystin-LR using sulfate radicals generated through photolysis, thermolysis and e−transfer mechanisms. Applied Catalysis B: Environmental, 96, 290–298.

    Article  CAS  Google Scholar 

  • Barhoumi, N., Olvera-Vargas, H., Oturan, N., Huguenot, D., Gadri, A., Ammar, S., Brillas, E., & Oturan, M. A. (2017). Kinetics of oxidative degradation/mineralization pathways of the antibiotic tetracycline by the novel heterogeneous electro-Fenton process with solid catalyst chalcopyrite. Applied Catalysis B: Environmental, 209, 637–647.

    Article  CAS  Google Scholar 

  • Brooke, S., Newcombe, G., Nicholson, B., & Klass, G. (2006). Decrease in toxicity of microcystins LA and LR in drinking water by ozonation. Toxicon, 48, 1054–1059.

    Article  CAS  Google Scholar 

  • Cai, C., Zhang, Z., Liu, J., Shan, N., Zhang, H., & Dionysiou, D. D. (2016). Visible light-assisted heterogeneous Fenton with ZnFe2O4 for the degradation of Orange II in water. Applied Catalysis B: Environmental, 182, 456–468.

    Article  CAS  Google Scholar 

  • Capelete, B. C., & Brandão, C. C. S. (2013). Evaluation of trihalomethane formation in treatment of water containing Microcystis aeruginosa using chitosan as coagulant. Water Science & Technology: Water Supply, 13, 1167–1173.

    CAS  Google Scholar 

  • Capelo-Neto, J., & Buarque, N. M. S. (2016). Simulation of saxitoxins adsorption in full-scale GAC filter using HSDM. Water Research, 88, 558–565.

    Article  CAS  Google Scholar 

  • Chang, J., Chen, Z., Wang, Z., Shen, J., Chen, Q., Kang, J., Yanga, L., Liu, X., & Nie, C. (2014). Ozonation degradation of microcystin-LR in aqueous solution: intermediates, byproducts and pathways. Water Research, 63, 52–61.

    Article  CAS  Google Scholar 

  • Chow, C. W. K., Drikas, M., House, J., Burch, M. D., & Velzeboer, R. M. A. (1999). The impact of conventional water treatment processes on cells of the cyanobacterium Microcystis aeruginosa. Water Research, 33, 3253–3262.

    Article  CAS  Google Scholar 

  • De Julio, M., Neves, E. F. A., Trofino, J. C., & Di Bernardo, L. (2006). Emprego do reagente de fenton como agente coagulante na remoção de substâncias húmicas de água por meio da flotação por ar dissolvido e filtração. Engenharia Sanitária e Ambiental, 11, 260–268.

    Article  Google Scholar 

  • De Julio, M., De Julio, T. S., & Di Bernardo, L. (2009). Efeito sinérgico do Fe+2 e H2O2 na reação de Fenton empregado no tratamento de águas de abastecimento contendo substâncias húmicas. Engenharia Ambiental, 6, 718–737.

    Google Scholar 

  • Dükkanci, M. (2017). Sono-photo-Fenton oxidation of bisphenol-A over a LaFeO3 perovskite catalyst. Ultrasonics Sonochemistry, S1350-4177, 30206–30207.

    Google Scholar 

  • Dziga, D., Wasylewski, M., Wladyka, B., Nybom, S., & Meriluoto, J. (2013). Microbial degradation of microcystins. Chemical Research in Toxicology, 26, 841–852.

    Article  CAS  Google Scholar 

  • Guerra, A. B., Tonucci, M. C., Ceballos, B. S. O., Guimarães, H. R. C., Lopes, W. S., Aquino, S. F., & Libanio, M. (2015). Remoção de microcistina-LR de águas eutrofizadas por clarificação e filtração seguidas de adsorção em carvão ativado granular. Engenharia Ambiental, 20, 603–612.

    Article  Google Scholar 

  • Heller, L., & Pádua, V. L. (2006). Abastecimento de Água para Consumo Humano. Belo Horizonte: Editora da UFMG.

    Google Scholar 

  • Ho, L., Lambling, P., Bustamante, H., Duker, P., & Newcombe, G. (2011). Application of powdered activated carbon for the adsorption of cylindrospermopsin and microcystin toxins from drinking water supplies. Water Research, 45, 2954–2964.

    Article  CAS  Google Scholar 

  • Huang, W. J., Cheng, B. L., & Cheng, Y. L. (2007). Adsorption of microcystin-LR by three types of activated carbon. Journal of Hazardous Materials, 141, 115–122.

    Article  CAS  Google Scholar 

  • Jia, Z., Kang, J., Zhang, W. C., Wang, W. M., Yang, C., Sun, H., Habibi, D., & Zhang, L. C. (2017). Surface aging behaviour of Fe-based amorphous alloys as catalysts during heterogeneous photo Fenton-like process for water treatment. Applied Catalysis B: Environmental, 204, 537–547.

    Article  CAS  Google Scholar 

  • Jones, G. J. (1979). A guide to methods for estimating microbial numbers and biomass in fresh water. Ambleside: Freshwater Biological Association.

    Google Scholar 

  • Jurczak, T., Tarczynska, M., Izydorczyk, K., Mankiewicz, J., Zalewski, M., & Meriluoto, J. (2005). Elimination of microcystins by water treatment processes—examples from Sulejow Reservoir, Poland. Water Research, 39, 2394–2406.

    Article  CAS  Google Scholar 

  • Karthikeyan, S., Dionysiou, D. D., Lee, A. F., Suvitha, S., Maharaja, P., Wilson, K., & Sekaran, G. (2016). Hydroxyl radical generation by cactus-like copper oxide nanoporous carbon catalysts for microcystin-LR environmental remediation. Catalysis Science & Technology, 6, 530–544.

    Article  CAS  Google Scholar 

  • Khataee, A., Gholami, P., & Sheydaei, M. (2016). Heterogeneous Fenton process by natural pyrite for removal of a textile dye from water: effect of parameters and intermediate identification. Journal of the Taiwan Institute of Chemical Engineers, 58, 366–373.

    Article  CAS  Google Scholar 

  • Lawrence, J. F., Niedzwiadek, B., & Menard, C. (2005). Quantitative determination of paralytic shellfish poisoning toxins in shellfish using pre-chromatographic oxidation and liquid chromatography with fluorescence detection: collaborative study. Journal of AOAC International, 88, 1714–1732.

    CAS  Google Scholar 

  • Lawton, L. A., Welgamage, A., Manage, P. M., & Edwards, C. (2011). Novel bacterial strains for the removal of microcystins from drinking water. Water Science & Technology, 63, 1137–1142.

    Article  CAS  Google Scholar 

  • Lee, J., & Walker, H. W. (2006). Effect of process variables and natural organic matter on removal of microcystin-LR by PAC-UF. Environmental Science & Technology, 40, 7336–7342.

    Article  CAS  Google Scholar 

  • Lins, R. P. (2011). Estrutura Dinâmica da Comunidade Fitoplanctônica em um Reservatório Eutrófico do Trópico Semiárido Brasileiro. Doctorate Thesis. Campina Grande: Universidade Federal de Campina Grande.

  • Liu, Y., Chen, W., Li, D., Huang, Z., Shen, Y., & Liu, Y. (2011). Cyanobacteria-/cyanotoxin-contaminations and eutrophication status before Wuxi drinking water crisis in Lake Taihu, China. Journal of Environmental Sciences, 23, 575–581.

    Article  CAS  Google Scholar 

  • Liu, X., Yang, D., Zhou, Y., Zhang, J., Luo, L., Meng, S., Chen, S., Tan, M., Li, Z., & Tang, L. (2017). Electrocatalytic properties of N-doped graphite felt in electro-Fenton process and degradation mechanism of levofloxacin. Chemosphere, 182, 306–315.

    Article  CAS  Google Scholar 

  • Macedo, D. R. G. (2009). Microcistina na Água e Biomagnificação em Peixes de Reservatórios de Abastecimento Público do Estado da Paraíba. MSc Dissertation. Campina Grande: Universidade Federal da Paraíba-PRODEMA.

  • Miao, H. F., Qin, F., Tao, G. J., Tao, W. Y., & Ruan, W. Q. (2010). Detoxification and degradation of microcystin-LR and -RR by ozonation. Chemosphere, 79, 355–361.

    Article  CAS  Google Scholar 

  • Ministério da Saude do Brasil. (2011). Portaria n° 2.914, de 12 de dezembro de 2011. Dispõe Sobre os Procedimentos de Controle e de Vigilância da Qualidade da Água para Consumo Humano e seu Padrão de Potabilidade. Brasília: Diário Oficial da União.

    Google Scholar 

  • Moreira, I. C., Bianchini Jr., I., & Vieira, A. A. H. (2011). Decomposition of dissolved organic matter released by an isolate of Microcystis aeruginosa and morphological profile of the associated bacterial community. Brazilian Journal of Biology, 71, 57–63.

    Article  CAS  Google Scholar 

  • Murray, C. A., & Parsons, S. A. (2004). Advanced oxidation processes: flowsheet options for bulk natural organic matter removal. Water Science & Technology: Water Supply, 4, 113–119.

    CAS  Google Scholar 

  • O’Neil, J. M., Davis, T., Burford, M. A., & Gobler, C. J. (2012). The rise of harmful cyanobacteria blooms: the potential roles of eutrophication and climate change. Harmful Algae, 14, 313–334.

    Article  Google Scholar 

  • Sokal, R. R., & Rohlf, F. J. (1981). Biometry—the principles and practice of statistics in biological research (2nd ed.). San Francisco: W. H. Freeman.

    Google Scholar 

  • Song, W., Xu, T., Cooper, W. J., Dionysiou, D. D., De La Cruz, A. A., & O'Shea, K. E. (2009). Radiolysis studies on the destruction of microcystin-LR in aqueous solution by hydroxyl radicals. Environmental Science & Technology, 43, 1487–1492.

    Article  CAS  Google Scholar 

  • Sun, F., Hai-Yan, P., Wen-Rong, H., & Chun-Xia, M. (2012). The lysis of Microcystis aeruginosa in AlCl3 coagulation and sedimentation processes. Chemical Engineering Journal, 193-194, 196–202.

    Article  CAS  Google Scholar 

  • Wang, Y., Lin, X., Shao, Z., Shan, D., Lia, G., & Irini, A. (2017). Comparison of Fenton, UV-Fenton and nano-Fe3O4 catalyzed UV-Fenton in degradation of phloroglucinol under neutral and alkaline conditions: role of complexation of Fe3+ with hydroxyl group in phloroglucinol. Chemical Engineering Journal, 313, 938–945.

    Article  CAS  Google Scholar 

  • Zhang, Y., Klamerth, N., Chelme-Ayala, P., & El-Din, M. G. (2017). Comparison of classical fenton, nitrilotriacetic acid (NTA)-Fenton, UV-Fenton, UV photolysis of Fe-NTA, UV-NTA-Fenton, and UV-H2O2 for the degradation of cyclohexanoic acid. Chemosphere, 175, 178–185.

    Article  CAS  Google Scholar 

  • Zhou, Q., Liu, Y., Yu, G., He, F., Chen, K., Xiao, D., Zhao, X., Feng, Y., & Li, J. (2017). Degradation kinetics of sodium alginate via sono-Fenton, photo-Fenton and sono-photo-Fenton methods in the presence of TiO2 nanoparticles. Polymer Degradation and Stability, 135, 111–120.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Department of Botany of the Universidade Federal de São Carlos for Cultures of M. aeruginosa and the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal Nível Superior (CAPES), and Financiadora de Estudos e Projetos (FINEP) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilton S. Lopes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lopes, W.S., Buriti, J.S., Cebalos, B.S.O. et al. Removal of Microcystin-LR from Drinking Water Using a System Involving Oxidation and Adsorption. Water Air Soil Pollut 228, 337 (2017). https://doi.org/10.1007/s11270-017-3504-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-017-3504-4

Keywords

Navigation