Skip to main content

Advertisement

Log in

The Influence of Surface Pavement on the Distribution of Polycyclic Aromatic Hydrocarbons (PAHs) in Urban Watershed

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The presence of urban surface pollutants washed off by stormwater is a growing concern due to their adverse effects on receiving water quality. The stormwater quality mitigation strategies, therefore, should be based on the knowledge of the distribution and source apportionment of pollutants on urban surfaces. This study showcases the distribution of particulate-associated PAHs as a function of surface characteristic. Samples were obtained from six sites in the city of Dresden, Germany, using a wet vacuum sample-taking method. Both surface load (mg/m2) and solid-phase concentration (mg/g) of PAHs were determined. Results show that the highest surface load of ∑16PAHs was found at a natural stone-paved pedestrian path with 34.5 μg/m2. By contrast, the highest solid-phase concentration occurred at a high traffic load road with 36 mg/kg. Through a combined qualitative diagnostic ratio and quantitative principal component analysis with stepwise multiple linear regression (PCA-MLR) source apportionment, two significant contributors to PAH at vehicular roads were primarily identified as pyrogenic and petrogenic sources; 81.6% of the PAH burden was ascribed to pyrogenic sources including vehicle emission, coal, and wood combustions; 18.4% was attributed to petrogenic sources, such as spilled engine oil and vehicular tire debris. To minimize the adverse influence of surface sediments adsorbed PAHs to the receiving waters via stormwater runoff, a surface pavement-based city street sweeping strategy could be planned and optimized to remove hazardous materials from the impervious urban surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abdel-Shafy, H. I., & Mansour, M. S. M. (2016). A review on polycyclic aromatic hydrocarbons: source, environmental impact, effect on human health and remediation. Egyptian Journal of Petroleum, 25(1), 107–123.

    Article  Google Scholar 

  • Albinet, A., Leoz-Garziandia, E., Budzinski, H., & ViIlenave, E. (2007). Polycyclic aromatic hydrocarbons (PAHs), nitrated PAHs and oxygenated PAHs in ambient air of the Marseilles area (south of France): concentrations and sources. Science of the Total Environment, 384(1–3), 280–292.

    Article  CAS  Google Scholar 

  • Amato, F., Querol, X., Johansson, C., Nagl, C., & Alastuey, A. (2010). A review on the effectiveness of street sweeping, washing and dust suppressants as urban PM control methods. Sci Total Environ, 408(16), 3070–3084.

    Article  CAS  Google Scholar 

  • Becker, A., & Grünewald, U. (2003). Flood risk in Central Europe. Science, 300(5622), 1099.

    Article  CAS  Google Scholar 

  • Benner, B. A., Bryner, N. P., Wise, S. A., Mulholland, G. W., Lao, R. C., & Fingas, M. F. (1990). Polycyclic aromatic hydrocarbon emissions from the combustion of crude-oil on water. Environmental Science & Technology, 24(9), 1418–1427.

    Article  CAS  Google Scholar 

  • Benner, B. A., Wise, S. A., Currie, L. A., Klouda, G. A., Klinedinst, D. B., Zweidinger, R. B., Stevens, R. K., & Lewis, C. W. (1995). Distinguishing the contributions of residential wood combustion and mobile source emissions using relative concentrations of dimethylphenanthrene isomers. Environmental Science & Technology, 29(9), 2382–2389.

  • Boonyatumanond, R., Murakami, M., Wattayakorn, G., Togo, A., & Takada, H. (2007). Sources of polycyclic aromatic hydrocarbons (PAHs) in street dust in a tropical Asian mega-city, Bangkok, Thailand. Science of the Total Environment, 384(1), 420–432.

    Article  CAS  Google Scholar 

  • Boonyatumanond, R., Wattayakorn, G., Togo, A., & Takada, H. (2006). Distribution and origins of polycyclic aromatic hydrocarbons (PAHs) in riverine, estuarine, and marine sediments in Thailand. Marine Pollution Bulletin, 52(8), 942–956.

    Article  CAS  Google Scholar 

  • Budzinski, H., Jones, I., Bellocq, J., Pierard, C., & Garrigues, P. (1997). Evaluation of sediment contamination by polycyclic aromatic hydrocarbons in the Gironde estuary. Marine Chemistry, 58(1–2), 85–97.

    Article  CAS  Google Scholar 

  • Cao, H., Chao, S., Qiao, L., Jiang, Y., Zeng, X., & Fan, X. (2017). Urbanization-related changes in soil PAHs and potential health risks of emission sources in a township in southern Jiangsu, China. Science of the Total Environment, 575, 692–700.

    Article  CAS  Google Scholar 

  • Dong, T. T. T., & Lee, B.-K. (2009). Characteristics, toxicity, and source apportionment of polycylic aromatic hydrocarbons (PAHs) in road dust of Ulsan, Korea. Chemosphere, 74(9), 1245–1253.

    Article  CAS  Google Scholar 

  • Dvorská, A., Lammel, G., & Klánová, J. (2011). Use of diagnostic ratios for studying source apportionment and reactivity of ambient polycyclic aromatic hydrocarbons over Central Europe. Atmospheric Environment, 45(2), 420–427.

    Article  Google Scholar 

  • Fitzgerald, D. J., Robinson, N. I., & Pester, B. A. (2004). Application of benzo(a)pyrene end coal tar tumor dose-response date to a modified benchmark dose method of guideline development. Environmental Health Perspectives, 112(14), 1341–1346.

    Article  CAS  Google Scholar 

  • Fraser, M. P., Cass, G. R., Simoneit, B. R. T., & Rasmussen, R. A. (1998). Air quality model evaluation data for organics. 5. C6−C22Nonpolar and Semipolar aromatic compounds. Environmental Science & Technology, 32(12), 1760–1770.

    Article  CAS  Google Scholar 

  • Grimmer, G., Jacob, J., Naujack, K. W., & Dettbarn, G. (1981). Profile of the polycyclic aromatic hydrocarbons from used engine oil? Inventory by GCGC/MS ? PAH in environmental materials, part 2. Fresenius' Zeitschrift für Analytische Chemie, 309(1), 13–19.

    Article  CAS  Google Scholar 

  • Harrison, R. M., Smith, D. J. T., & Luhana, L. (1996). Source Apportionment of atmospheric polycyclic aromatic hydrocarbons collected from an urban location in Birmingham, U.K. Environmental Science & Technology, 30(3), 825–832.

    Article  CAS  Google Scholar 

  • Hassanien, M. A., & Abdel-Latif, N. M. (2008). Polycyclic aromatic hydrocarbons in road dust over greater Cairo, Egypt. Journal of Hazardous Materials, 151(1), 247–254.

    Article  CAS  Google Scholar 

  • Irwin R. J., VanMouwerik M., Stevens L., Seese M. D. and Basham W. (1997). Environmental contaminants encyclopedia. In: National Park Service WRD (ed.), Fort Collins, Colorado.

  • Kose, T., Yamamoto, T., Anegawa, A., Mohri, S., & Ono, Y. (2008). Source analysis for polycyclic aromatic hydrocarbon in road dust and urban runoff using marker compounds. Desalination, 226(1–3), 151–159.

    Article  CAS  Google Scholar 

  • Larsen, R. K., & Baker, J. E. (2003). Source apportionment of polycyclic aromatic hydrocarbons in the urban atmosphere: a comparison of three methods. Environmental Science & Technology, 37(9), 1873–1881.

    Article  CAS  Google Scholar 

  • Lau, S.-L., & Stenstrom, M. K. (2005). Metals and PAHs adsorbed to street particles. Water Research, 39(17), 4083–4092.

    Article  CAS  Google Scholar 

  • Li, C. K., & Kamens, R. M. (1993). The use of polycyclic aromatic hydrocarbons as source signatures in receptor modeling. Atmospheric Environment. Part A. General Topics, 27(4), 523–532.

    Article  Google Scholar 

  • Li, J., Zhang, G., Li, X. D., Qi, S. H., Liu, G. Q., & Peng, X. Z. (2006). Source seasonality of polycyclic aromatic hydrocarbons (PAHs) in a subtropical city, Guangzhou, South China. Sci Total Environ, 355(1–3), 145–155.

    Article  CAS  Google Scholar 

  • Liu, M., Cheng, S. B., Ou, D. N., Hou, L. J., Gao, L., Wang, L. L., Xie, Y. S., Yang, Y., & Xu, S. Y. (2007). Characterization, identification of road dust PAHs in central Shanghai areas, China. Atmospheric Environment, 41(38), 8785–8795.

    Article  CAS  Google Scholar 

  • Loganathan, P., Vigneswaran, S., & Kandasamy, J. (2013). Road-deposited sediment pollutants: a critical review of their characteristics, source apportionment, and management. Critical Reviews in Environmental Science and Technology, 43(13), 1315–1348.

    Article  CAS  Google Scholar 

  • Lorenzi, D., Entwistle, J. A., Cave, M., & Dean, J. R. (2011). Determination of polycyclic aromatic hydrocarbons in urban street dust: implications for human health. Chemosphere, 83(7), 970–977.

    Article  CAS  Google Scholar 

  • Matthias G. (1987). Runoff quality from a street with medium traffic loading. Science of the Total Environment 59(0), 457–466.

  • May, W. E., & Wise, S. A. (1984). Liquid chromatographic determination of polycyclic aromatic hydrocarbons in air particulate extracts. Analytical Chemistry, 56(2), 225–232.

    Article  CAS  Google Scholar 

  • Metre, P. C. V., Mahler, B. J., & Wilson, J. T. (2008). PAHs underfoot: contaminated dust from coal-tar seal-coated pavement is widespread in the United States. Environmental Science & Technology, 43(1), 20–25.

    Article  Google Scholar 

  • Mostafa, A. R., Hegazi, A. H., El-Gayar, M. S., & Andersson, J. T. (2009). Source characterization and the environmental impact of urban street dusts from Egypt based on hydrocarbon distributions. Fuel, 88(1), 95–104.

    Article  CAS  Google Scholar 

  • Netto, A. P., Krauss, T., Cunha, I., & Rego, E. P. (2006). PAHs in SD:polycyclic aromatic hydrocarbons levels in street dust in the central area of Niterói City, RJ, Brazil. Water, Air, and Soil Pollution, 176(1–4), 57–67.

    Article  Google Scholar 

  • Obiri, S., Cobbina, S., Armah, F., & Naangmenyele, Z. (2011). Quantification and characterization of vehicle-based polycyclic aromatic hydrocarbons (PAHs) in street dust from the tamale metropolis, Ghana. Environmental Science and Pollution Research, 18(7), 1166–1173.

    Article  CAS  Google Scholar 

  • Pandey, P. K., Patel, K. S., & Lenicek, J. (1999). Polycyclic aromatic hydrocarbons: need for assessment of health risks in India? Study of an urban-industrial location in India. Environmental Monitoring and Assessment, 59(3), 287–319.

    Article  CAS  Google Scholar 

  • Phillips, D. H. (1983). Fifty years of benzo(a)pyrene. Nature, 303(5917), 468–472.

    Article  CAS  Google Scholar 

  • Saeedi M., Li L. Y. and Salmanzadeh M. (2012). Heavy metals and polycyclic aromatic hydrocarbons: pollution and ecological risk assessment in street dust of Tehran. Journal of Hazardous Materials 227–228(0), 9–17.

  • Schauer, J. J., Rogge, W. F., Hildemann, L. M., Mazurek, M. A., Cass, G. R., & Simoneit, B. R. T. (1996). Source apportionment of airborne particulate matter using organic compounds as tracers. Atmospheric Environment, 30(22), 3837–3855.

    Article  CAS  Google Scholar 

  • Simcik, M. F., Eisenreich, S. J., & Lioy, P. J. (1999). Source apportionment and source/sink relationships of PAHs in the coastal atmosphere of Chicago and Lake Michigan. Atmospheric Environment, 33(30), 5071–5079.

    Article  CAS  Google Scholar 

  • Soclo, H. H., Garrigues, P., & Ewald, M. (2000). Origin of polycyclic aromatic hydrocarbons (PAHs) in coastal marine sediments: case studies in Cotonou (Benin) and Aquitaine (France) areas. Marine Pollution Bulletin, 40(5), 387–396.

    Article  CAS  Google Scholar 

  • Sofowote, U. M., McCarry, B. E., & Marvin, C. H. (2008). Source apportionment of PAH in Hamilton harbour suspended sediments: comparison of two factor analysis methods. Environmental Science & Technology, 42(16), 6007–6014.

    Article  CAS  Google Scholar 

  • Takada H., Onda T., Harada M. and Ogura N. (1991). Distribution and sources of polycyclic aromatic hydrocarbons (PAHs) in street dust from the Tokyo metropolitan area. Science of the Total Environment 107(0), 45–69.

  • Tobiszewski M. and Namieśnik J. (2012). PAH diagnostic ratios for the identification of pollution emission sources. Environmental Pollution 162(0), 110–119.

  • Upshall, C., Payne, J. F., & Hellou, J. (1993). Induction of mfo enzymes and production of bile metabolites in rainbow trout (Oncorhynchus mykiss) exposed to waste crankcase oil. Environmental Toxicology and Chemistry, 12(11), 2105–2112.

    Article  CAS  Google Scholar 

  • Venkataraman, C., Lyons, J. M., & Friedlander, S. K. (1994). Size distributions of polycyclic aromatic hydrocarbons and elemental carbon. 1. Sampling, measurement methods, and source characterization. Environmental Science & Technology, 28(4), 555–562.

    Article  CAS  Google Scholar 

  • Wang, C., Li, Y., Liu, J., Xiang, L., Shi, J., & Yang, Z. (2010). Characteristics of PAHs adsorbed on street dust and the correlation with specific surface area and TOC. Environmental Monitoring and Assessment, 169(1–4), 661–670.

    Article  CAS  Google Scholar 

  • Wang, D.-G., Yang, M., Jia, H.-L., Zhou, L., & Li, Y.-F. (2009). Polycyclic aromatic hydrocarbons in urban street dust and surface soil: comparisons of concentration, profile, and source. Archives of Environmental Contamination and Toxicology, 56(2), 173–180.

    Article  CAS  Google Scholar 

  • Xie, J., Chen, H., Liao, Z., Gu, X., Zhu, D., & Zhang, J. (2017). An integrated assessment of urban flooding mitigation strategies for robust decision making. Environmental Modelling & Software, 95, 143–155.

    Article  CAS  Google Scholar 

  • Yang, Y., & Baumann, W. (1995). Seasonal and areal variations of polycyclic aromatic hydrocarbon concentrations in street dust determined by supercritical fluid extraction and gas chromatography-mass spectrometry. Analyst, 120(2), 243–248.

    Article  CAS  Google Scholar 

  • Yunker, M. B., Macdonald, R. W., Vingarzan, R., Mitchell, R. H., Goyette, D., & Sylvestre, S. (2002). PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition. Organic Geochemistry, 33(4), 489–515.

    Article  CAS  Google Scholar 

  • Zhang, J., Hua, P., & Krebs, P. (2013). Potential source contributions and risk assessment of particulate-associated polycyclic aromatic hydrocarbons in size-fractionated road-deposited sediments. Water Practice and Technology, 8(2), wpt. 2013024.

    Article  Google Scholar 

  • Zhang, J., Hua, P., & Krebs, P. (2015a). The build-up dynamic and chemical fractionation of cu, Zn and cd in road-deposited sediment. Science of the Total Environment, 532, 723–732.

    Article  CAS  Google Scholar 

  • Zhang, J., Hua, P., & Krebs, P. (2016). The influences of dissolved organic matter and surfactant on the desorption of Cu and Zn from road-deposited sediment. Chemosphere, 150, 63–70.

    Article  CAS  Google Scholar 

  • Zhang, J., Hua, P., & Krebs, P. (2017). Influences of land use and antecedent dry-weather period on pollution level and ecological risk of heavy metals in road-deposited sediment. Environmental Pollution, 228, 158–168.

    Article  CAS  Google Scholar 

  • Zhang, J., Wang, J., Hua, P., & Krebs, P. (2015b). The qualitative and quantitative source apportionments of polycyclic aromatic hydrocarbons in size dependent road deposited sediment. Science of the Total Environment, 505, 90–101.

    Article  CAS  Google Scholar 

  • Zhao, H., Yin, C., Chen, M., Wang, W., Chris, J., & Shan, B. (2009). Size distribution and diffuse pollution impacts of PAHs in street dust in urban streams in the Yangtze River Delta. Journal of Environmental Sciences, 21(2), 162–167.

    Article  Google Scholar 

  • Zhao, Z., Jiang, Y., Li, Q., Cai, Y., Yin, H., Zhang, L., & Zhang, J. (2017). Spatial correlation analysis of polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides (OCPs) in sediments between Taihu Lake and its tributary rivers. Ecotoxicology and Environmental Safety, 142, 117–128.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to gratefully thank Mrs. Dr. Heike Brückner, Mrs. Sinaida Heidt, and Mrs. Ulrike Gebauer for their assistance with laboratory analysis. This work was jointly supported by the COLABIS project (Collaborative Early Warning Information Systems for Urban Infrastructures, Grant No.: 03G0852A), and Managing Water Resources for Urban Catchments project (in the framework of the Sino-German “Innovation Cluster Major Water” Grant No.: 02WCL1337A-K) funded by German Federal Ministry of Education and Research (BMBF). Mention of trade names or commercial products does not constitute endorsement or recommendation for use. This manuscript has not been subjected to the above agencies’ required peer and policy review and therefore does not reflect the views of the above agencies and no official endorsement should be inferred.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pei Hua.

Additional information

Statement

This paper is based on my conference proceeding and can be accessed at the following link http://documents.irevues.inist.fr/bitstream/handle/2042/51301/1C22-060ZHA.pdf?sequence=1&isAllowed=y

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Hua, P. & Krebs, P. The Influence of Surface Pavement on the Distribution of Polycyclic Aromatic Hydrocarbons (PAHs) in Urban Watershed. Water Air Soil Pollut 228, 318 (2017). https://doi.org/10.1007/s11270-017-3501-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-017-3501-7

Keywords

Navigation