Skip to main content
Log in

A Greener UV and Peroxide-Based Chemical Oxygen Demand Test

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Water quality assessment typically includes the determination of chemical oxygen demand (COD) by oxidation of organic matter with Cr(VI) in an acidic medium followed by digestion. Unfortunately, the required reagents are harmful and the reaction times are rather long. We investigated earlier the use of H2O2 as a more environmentally friendly oxidizing agent to replace the hazardous chromates. In the present study, we have furthered this possibility by incorporating the use of H2O2 in the presence of UV light. A protocol has been devised and tested with standards and real samples that replaces toxic Cr(VI), halves the amount of silver sulfate required, and greatly reduces the necessary reaction time, thus yielding a faster and more environmentally sound method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ai, S., Li, J., Yang, Y., Gao, M., Pan, Z., & Jin, L. (2004). Study on photocatalytic oxidation for determination of chemical oxygen demand using a nano-TiO2-K2Cr2O7 system. Analytica Chimica Acta, 509, 237–241.

    Article  CAS  Google Scholar 

  • Alnaizy, R., & Akgerman, A. (2000). Advanced oxidation of phenolic compounds. Advances in Environmental Research, 4, 233–244.

    Article  Google Scholar 

  • APHA, AWWA, & WEF. (1998). In A. D. Eaton, L. S. Clesceri, A. E. Greenberg, & M. A. H. Franson (Eds.), Standard methods for the examination of water and wastewater (20th ed.). Washington, D.C: American Public Health Association, American Water Works Association, Water Environment Federation.

    Google Scholar 

  • Benitez, F. J., Acero, J. L., Real, F. J., Roldan, G., & Casas, F. (2011). Comparison of different chemical oxidation treatments. Chemical Engineering Journal, 168, 1149–1156.

    Article  CAS  Google Scholar 

  • Bogdanowicz, R., Czupryniak, J., Gnyba, M., Ryl, J., Ossowski, T., Sobaszek, M., & Darowicki, K. (2012). Determination of chemical oxygen demand (COD) at boron-doped diamond (BDD) sensor by means of amperometric technique. Procedia Engineering, 47, 1117–1120.

    Article  CAS  Google Scholar 

  • Bogdanowicz, R., Czupryniak, J., Gnyba, M., Ryl, J., Ossowski, T., Sobaszek, M., Siedlecka, E. M., & Darowicki, K. (2013). Amperometric sensing of chemical oxygen demand at glassy carbon and silicon electrodes modified with boron-doped diamond. Sensors and Actuators B, 189, 30–36.

    Article  CAS  Google Scholar 

  • Carbajal-Palacios, P., Balderas-Hernández, P., Ibanez, J. G., & Roa-Morales, G. (2012). Replacing dichromate with hydrogen peroxide in the chemical oxygen demand (COD) test. Water Science and Technology, 66, 1069–1073.

    Article  CAS  Google Scholar 

  • Chen, J., Zhang, J., Xian, Y., Ying, X., Liu, M., & Jin, L. (2005). Preparation and application of TiO2 photocatalytic sensor for chemical oxygen demand determination in water research. Water Research, 39, 1340–1346.

    Article  CAS  Google Scholar 

  • Chidambara-Raj, C. B., & Quen, H. L. (2005). Advanced oxidation processes for wastewater treatment: optimization of UV/H2O2 process through a statistical technique. Chemical Engineering Science, 60, 5305–5311.

    Article  Google Scholar 

  • Dharmadhikari, D. M., Vanerkar, A. P., & Barhate, N. M. (2005). Chemical oxygen demand using closed microwave digestion system. Environmental Science and Technology, 39, 6198–6201.

    Article  CAS  Google Scholar 

  • Domini, C. E., Hidalgo, M., Marken, F., & Canals, A. (2006). Comparison of three optimized digestion methods for rapid determination of chemical oxygen demand: closed microwaves, open microwaves and ultrasound irradiation. Analytica Chimica Acta, 561, 210–217.

    Article  CAS  Google Scholar 

  • Domini, C. E., Vidal, L., & Canals, A. (2009). Trivalent manganese as an environmentally friendly oxidizing reagent for microwave and ultrasound-assisted chemical oxygen demand determination. Ultrasonics Sonochemistry, 16, 686–691.

    Article  CAS  Google Scholar 

  • Dubber, D., & Gray, N. F. (2010). Replacement of chemical oxygen demand (COD) with total organic carbon (TOC) for monitoring wastewater treatment performance to minimize disposal of toxic analytical waste. Journal of Environmental Science and Health. Part A: Toxic/Hazardous Substances and Environmental Engineering, 45, 1595–1600.

    Article  CAS  Google Scholar 

  • Ge, Y., Zhai, Y., Niu, D., Wang, Y., Fernandez, C., Ramakrishnappa, T., Hu, X., & Wang, L. (2016). Electrochemical determination of chemical oxygen demand using Ti/TiO2 electrode. International Journal of Electrochemical Science, 11, 9812–9821.

    Article  CAS  Google Scholar 

  • Gogate, P. R., & Pandit, A. B. (2004). A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions. Advances in Environmental Research, 8, 501–551.

    Article  CAS  Google Scholar 

  • ISO on line browsing platform, OBP, ISO 6060:1989(en). https://www.iso.org/obp/ui/#iso:std:iso:6060:ed-2:v1:en, 1989 (accessed Dec. 31, 2016).

  • ISO on line browsing platform, OBP, ISO 15705:2002(en). https://www.iso.org/obp/ui/#iso:std:iso:15705:ed-1:v1:en, 2002 (accessed Dec. 31, 2016).

  • Kusic, H., Koprivanac, N., & Bozic, A. L. (2006). Minimization of organic pollutant content in aqueous solution by means of AOPs: UV- and ozone-based technologies. Chemical Engineering Journal, 123, 127–137.

    Article  CAS  Google Scholar 

  • Ledakowics, S., Solecka, M., & Zylla, R. (2001). Biodegradation, decolourisation and detoxification of textile wastewater enhanced by advanced oxidation processes. Journal of Biotechnology, 89, 175–184.

    Article  Google Scholar 

  • Li, C., & Song, G. (2009). Photocatalytic degradation of organic pollutants and detection of chemical oxygen demand by fluorescence methods. Sensors and Actuators B: Chemical, 137, 432–436.

    Article  CAS  Google Scholar 

  • Luiz de Mattos, I., Antonelli, S. K., Delphini, B. A., & Fernandes, J. R. (2003). Hydrogen peroxide: significance and chemical determination. Quimica Nova, 26, 373–380.

    Article  CAS  Google Scholar 

  • Nilsun, H. I. (1999). Critical effect of hydrogen peroxide in photochemical dye degradation. Water Research, 33, 1080–1084.

    Article  Google Scholar 

  • Quintero, L., & Cardona, S. (2010). Technologies for the decolorization of dyes: indigo and indigo carmine. Dyna (Colombia), 77, 731–386.

    Google Scholar 

  • Raposo, F., Rubia, M. A., Burja, R., & Alaiz, M. (2008). Assessment of a modified optimized method for determining chemical oxygen demand of solid substrates and solutions with high suspended solids content. Talanta, 76, 448–453.

    Article  CAS  Google Scholar 

  • Silva, C. R., Conceição, C. D. C., Bonifácio, V. G., Fatibello-Filho, O., & Teixeira, M. F. S. (2009). Determination of the chemical oxygen demand (COD) using a copper electrode: a clean alternative method. Journal of Solid State Electrochemistry, 13, 665–669.

    Article  CAS  Google Scholar 

  • Silvestre, C. I. C., Frigerio, C., Santos, J. L. M., & Lima, J. L. F. C. (2011). Quantum dots assisted photocatalysis for the chemiluminometric determination of chemical oxygen demand using a single interface flow system. Analytica Chimica Acta, 699, 193–197.

    Article  Google Scholar 

  • Sousa, A. C., Lucio, M. M., Neto, B. O., Marcone, G., Pereira, A., Dantas, E., Fragoso, W., Araujo, M., & Galvão, R. (2007). A method for determination of COD in a domestic wastewater treatment plant by using near-infrared reflectance spectrometry of seston. Analytica Chimica Acta, 588, 231–236.

    Article  CAS  Google Scholar 

  • Su, Y., Li, X., Chen, H., Lv, Y., & Hou, X. (2007). Rapid, sensitive and on-line measurement of chemical oxygen demand by novel optical method based on UV photolysis and chemiluminescence. Microchemical Journal, 87, 56–61.

    Article  CAS  Google Scholar 

  • USP Technologies, Solutions for a clean environment. http://www.h2o2.com/products-and-services/us-peroxide-technologies.aspx?pid=112&name=Hydrogen-Peroxide, 2017 (accessed Feb. 8, 2017).

  • Vyrides, I., & Stuckey, D. C. (2009). A modified method for the determination of chemical oxygen demand (COD) for samples with high salinity and low organics. Bioresource Technology, 100, 979–982.

    Article  CAS  Google Scholar 

  • Yang, J., Chen, J., Zhou, Y., & Wu, K. (2011). A nano-copper electrochemical sensor for sensitive detection of chemical oxygen demand. Sensors and Actuators B: Chemical, 153, 78–82.

    Article  CAS  Google Scholar 

  • Yao, H., Wu, B., Qu, H., & Cheng, Y. (2009). A high throughput chemiluminescence method for determination of chemical oxygen demand in waters. Analytica Chimica Acta, 633, 76–80.

    Article  CAS  Google Scholar 

  • Yu, H., Wang, H., Quan, X., Chen, S., & Zhang, Y. (2007). Amperometric determination of chemical oxygen demand using boron-doped diamond (BDD) sensor. Electrochemical Communications, 9, 2280–2285.

    Article  CAS  Google Scholar 

  • Yu, X., Yang, H., & Sun, L. (2016). Determination of chemical oxygen demand using UV/O3. Water, Air and Soil Pollution, 227, 458.

    Article  Google Scholar 

  • Zhang, S., Li, L., & Zhao, H. (2009a). A portable photoelectrochemical probe for rapid determination of chemical oxygen demand in wastewaters. Environmental Science and Technology, 43, 7810–7815.

    Article  CAS  Google Scholar 

  • Zhang, S., Li, L., Zhao, H., & Li, G. (2009b). A portable miniature UV-LED based photoelectrochemical system for determination of chemical oxygen demand in wastewater. Sensors and Actuators B: Chemical, 141, 634–640.

    Article  CAS  Google Scholar 

  • Zhu, L., Chen, Y., Wu, Y., Li, X., & Tang, H. (2006). A surface fluorinated-TiO2-KMnO4 photocatalytic system for determination of chemical oxygen demand. Analytica Chimica Acta, 571, 242–247.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Facultad de Química de la Universidad Autónoma del Estado de México and Centro Conjunto de Investigación en Química Sustentable for facilitating the use of space, materials, and reagents; Consejo Nacional de Ciencia y Tecnología for financial assistance; Universidad Iberoamericana for editing services; and Dr. Rosa María Gómez Espinosa for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge G. Ibanez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carbajal-Palacios, P., Balderas-Hernández, P., Roa-Morales, G. et al. A Greener UV and Peroxide-Based Chemical Oxygen Demand Test. Water Air Soil Pollut 228, 313 (2017). https://doi.org/10.1007/s11270-017-3470-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-017-3470-x

Keywords

Navigation