Skip to main content
Log in

Removal of Tartrazine from Aqueous Solution by Adsorption on Activated Red Mud

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

In this study, activated red mud was used to develop an effective adsorbent in order to remove a toxic azo dye (tartrazine E102) from aqueous solutions. To increase the adsorption capacity, the red mud was activated by acid-heat treatment using 20 wt.% HCl (RM-HCl). To establish the optimum operating parameters, the influence of pH, adsorbent dose, contact time, initial dye concentration, and stirring rate was investigated. The adsorption equilibrium was studied using Langmuir, Freundlich, Dubinin-Radushkevich, Temkin isotherm models, and the characteristic parameters for each adsorption isotherm were determined. The kinetics of the adsorption process was analyzed by means of pseudo-first-order and pseudo-second-order models. The maximum removal efficiency obtained under optimum conditions was 84.72%. These results were in accordance with the isotherm and kinetic data. The results suggested that tartrazine adsorption process follows the pseudo-second-order kinetic model and also that fits Langmuir isotherm model. The maximum monolayer adsorption capacity was 136.98 mg/g.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agyei, N. M., Strydom, C. A., & Potgieter, J. H. (2000). An investigation of phosphate ion adsorption from aqueous solution by fly ash and slag. Cement and Concrete Research, 30, 823–826.

    Article  CAS  Google Scholar 

  • Alinsafi, A., Khemis, M., Pons, M. N., Leclerc, J. P., Yaacoubi, A., Benhammou, A., & Nejmeddine, A. (2005). Electro-coagulation of reactive textile dyes and textile wastewater. Chemical Engineering and Processing, 44, 461–470.

    Article  CAS  Google Scholar 

  • Alkan, M., Celikcapa, S., Demirbas, O., & Dogan, M. (2005). Removal of reactive blue 221 and acid blue 62 anionic dyes from aqueous solutions by sepiolite. Dyes and Pigments, 65, 251–259.

    Article  CAS  Google Scholar 

  • Amin, K. A., Abdel-Hameid, H., & Abd-Elsttar, A. H. (2010). Effect of food azo dyes tartrazine and carmoisine on biochemical parameters related to renal, hepatic function and oxidative stress biomarkers in young male rats. Food and Chemical Toxicology, 48(10), 2994–2999.

    Article  CAS  Google Scholar 

  • Bacioiu, I. G., Stoica, L., Constantin, C., & Stanescu, A. M. (2016). Adsorption equilibrium and kinetics modeling for tartrazine (E102)—Fe(II) based adsorbent system. Revista de Chimie, 67(12), 2391–2395.

    CAS  Google Scholar 

  • Bagda, E., & Bagda, E. (2012). Removal of basic blue and crystal violet with a novel biosorbent: oak galls. Journal of Environmental Protection and Ecology, 13(2), 517–531.

    CAS  Google Scholar 

  • Banat, I. M., Nigam, P., Singh, D., & Marchant, R. (1996). Microbial decolorization of textile-dye-containning effluents: a review. Bioresource Technology, 58, 217–227.

    Article  CAS  Google Scholar 

  • Bell, J., Plumb, J. J., Buckley, C. A., & Stuckey, D. C. (2000). Treatment and decolorization of dyes in an anaerobic baffled reactor. Journal of Environmental Engineering, ASCE, 126, 1026–1032.

    Article  CAS  Google Scholar 

  • Bhatia, M. S. (2000). Allergy to tartrazine in psychotropic drugs. The Journal of Clinical Psychiatry, 61(7), 473–476.

    Article  CAS  Google Scholar 

  • Bhatnagar, A., Vítor Vilar, J. P., Cidália, M. S. B., & Rui, A. R. B. (2011). A review of the use of red mud as adsorbent for the removal of toxic pollutants from water and wastewater. Environmental Technology, 32(3), 231–249.

    Article  CAS  Google Scholar 

  • Ciardelli, G., Corsi, L., & Marucci, M. (2000). Membrane separation for wastewater reuse in the textile industry. Resources, Conservation and Recycling, 31, 189–197.

    Article  Google Scholar 

  • Dogan, M., Alkan, M., & Onganer, Y. (2000). Adsorption of methylene blue from aqueous solution onto perlite. Water, Air, and Soil Pollution, 120, 229–248.

    Article  CAS  Google Scholar 

  • Galarneau, E., & Gehr, R. (1997). Phosphorus removal from wastewaters: experimental and theoretical support for alternative mechanisms. Water Research, 31(2), 328–338.

    Article  CAS  Google Scholar 

  • Glenister, D. J., & Thornber, M. R. (1995). Alkalinity of red mud and its applications for management of acid wastes. Chem, 85, 100–113.

    Google Scholar 

  • Guo, H., Li, Y., & Zhao, K. (2010). Arsenate removal from aqueous solution using syntetic siderite. Journal of Hazardous Materials, 176(1–3), 174–180.

    Article  CAS  Google Scholar 

  • Gupta, V. K., & Suhas. (2009). Application of low-cost adsorbents for dye removal—a review. Journal of Environmental Management, 90(8), 2313–2342.

    Article  CAS  Google Scholar 

  • Gupta, V. K., Ali, I., & Saini, V. K. (2004). Removal of rhodamine B, fast green, and methylene blue from wastewater using red mud, an aluminum industry waste. Industrial and Engineering Chemistry Research, 43, 1740–1747.

    Article  CAS  Google Scholar 

  • Ho, Y. S. (2006). Review of second-order models for adsorption systems. Journal of Hazardous Materials, B136, 681–668.

    Article  Google Scholar 

  • Kopsidas, O., & Politi, D. (2016). Batch studies for methylene blue removal and recovery by untreated coffee residues. Journal of Environmental Protection and Ecology, 17(4), 1481–1495.

    Google Scholar 

  • La Para, T. M., Konopka, A., Nakatsu, C. H., & Alleman, J. E. (2000). Thermophilic aerobic wastewater treatment in continuous-flow bioreactors. Journal of Environmental Engineering, ASCE, 126, 739–744.

    Article  Google Scholar 

  • Liu, C., Li, Y., Luan, Z., Chen, Z., Zhang, Z., & Jia, Z. (2007). Adsorption removal of phosphate from aqueous solution by active red mud. Journal of Environmental Sciences, 19, 1166–1170.

    Article  CAS  Google Scholar 

  • Lopez, E., Soto, B., Arias, M., Nunez, A., Rubinos, D., & Barral, M. T. (1998). Adsorbent properties of red mud and its use for wastewater treatment. Water Research, 32, 1314–1322.

    Article  CAS  Google Scholar 

  • Mall, I. D., Srivastava, V. C., Agarwal, N. K., & Mishra, I. M. (2005). Removal of congo red from aqueous solution by bagasse fly ash and activated carbon: kinetic study and equilibrium isotherm analyses. Chemosphere, 61, 492–501.

    Article  CAS  Google Scholar 

  • Mavros, P., Danilidou, A. C., Lazaridis, N. K., & Stergiou, L. (1994). Color removal from aqueous solutions. Part I. Flotation. Environmental Technology, 15, 601–616.

    Article  CAS  Google Scholar 

  • McMullan, G., Meehan, C., Conneely, A., Kirby, N., Robinson, T., Nigam, P., Banat, I. M., Marchant, R., & Smyth, W. F. (2001). Microbial decolourisation and degradation of textile dyes. Applied Microbiology and Biotechnology, 56, 81–87.

    Article  CAS  Google Scholar 

  • Mehdi, S. S., Seyed, J. J., Omid, G., Imsoon, K., Seung, M. L., & Jae, K. Y. (2014). Removal of acid blue 113 and reactive black 5 dye from aqueous solutions by activated red mud. Journal of Industrial and Engineering Chemistry, 20, 1432–1437.

    Article  Google Scholar 

  • Mittal, A., Krishnan, L., & Mittal, J. (2006). Adsorption isotherms, kinetics and column operations for the removal of hazardous dye, tartrazine from aqueous solutions using waste materials-bottom ash and de-oiled soya, as adsorbents. Journal of Hazardous Materials, 136(3), 567–578.

    Article  CAS  Google Scholar 

  • Møller, P., & Wallin, H. (2000). Genotoxic hazards of azo pigments and other colorants related to 1-phenylazo-2-hydroxynaphthalene. Mutation Research, 462(1), 13–30.

    Article  Google Scholar 

  • Muthukumar, M., & Selvakumar, N. (2004). Studies on the effect of inorganic salts on decoloration of acid dye effluents by ozonation. Dyes and Pigments, 62, 221–228.

    Article  CAS  Google Scholar 

  • Namasivayam, C., & Arasi, D. J. S. E. (1997). Removal of congo red from wastewater by adsorption onto waste red mud. Chemosphere, 34, 401–417.

    Article  CAS  Google Scholar 

  • Namasivayam, C., Yamuna, R. T., & Arasi, D. J. S. E. (2002). Removal of procion orange from wastewater by adsorption on waste red mud. Separation Science and Technology, 37, 2421–2431.

    Article  CAS  Google Scholar 

  • Õ Neill, C., Hawkes, F. R., Hawkes, D. L., Lourenco, N. D., Pinheiro, H. M., & Delee, W. (1999). Colour in textile efluents-sources, measurement, discharge consents and simulation: a review. Journal of Chemical Technology and Biotechnology, 74, 1009–1018.

    Article  Google Scholar 

  • Oguz, E. (2005). Sorption of phosphate from solid/liquid interface by fly ash. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 262(1/2/3), 113–117.

    Article  CAS  Google Scholar 

  • Omar, H. H. (2008). Algal decolorization and degradation of monoazo and diazo dyes. Pakistan Journal of Biological Sciences, 11(10), 1310–1316.

    Article  CAS  Google Scholar 

  • Paramguru, R. K., Rath, P. C., & Misra, V. N. (2005). Trends in red mud utilization—a review. Minerals Processing and Extractive Metallurgy, 26, 1–29.

    CAS  Google Scholar 

  • Pradhan, J., Das, S. N., & Thakur, R. S. (1999). Adsorption of hexavalent chromium from aqueous solution by using activated red mud. Journal of Colloid and Interface Science, 217, 137–141.

    Article  CAS  Google Scholar 

  • Ravi Kumar, M. N. V., Sridhari, T. R., Bhavani, K. D., & Dutta, P. K. (1998). Trends in color removal textile mill effluents. Colorage, 40, 25–34.

    Google Scholar 

  • Robinson, T., Mcmullan, G., Marchant, R., & Nigam, P. (2001). Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresource Technology, 77, 247–255.

    Article  CAS  Google Scholar 

  • Santona, L., Castaldi, P., & Melis, P. (2006). Evaluation of the interaction mechanisms between red muds and heavy metals. Journal of Hazardous Materials B, 136, 324–329.

    Article  CAS  Google Scholar 

  • Secula, M. S., Cretescu, I., & Diaconu, M. (2014). Adsorption of acid dye Eriochrome Black T from aqueous solutions onto activated carbon. Kinetic and equilibrium studies. Journal of Environmental Protection and Ecology, 15(4), 1583–1593.

    CAS  Google Scholar 

  • Shiao, S. J., & Akashi, K. (1977). Phosphate removal from aqueous solution from activated red mud. Journal (Water Pollution Control Federation), 49(2), 280–285.

    CAS  Google Scholar 

  • Shrestha, S., Bharat, R. B., Lee, K. H., & Cho, H. (2006). Some of the food color additives are potent inhibitors of human protein tyrosine phosphatases. Bulletin of the Korean Chemical Society, 27, 1567–1571.

    Article  CAS  Google Scholar 

  • Stanescu, A. M., Stoica, L., Constantin, C., & Bacioiu, G. (2015). Competitive biosorption of Cu2+ and Cd2+ onto inactive Saccharomyces cerevisiae cells. Journal of Environmental Protection and Ecology, 16(1), 204–213.

    CAS  Google Scholar 

  • Stoica, L., Stanescu, A. M., Constantin, C., Oprea, O., & Bacioiu, G. (2015). Removal of copper(II) from aqueous solutions by biosorption-flotation. Water, Air, and Soil Pollution. doi:10.1007/s11270-015-2533-0.

  • Sun, Q., & Yang, L. (2003). The adsorption of basic dyes from aqueous solution on modified peat-resin particle. Water Research, 37, 1535–1544.

    Article  CAS  Google Scholar 

  • Swaminathan, K., Sandhya, S., Carmalin Sophia, A., Pachhade, K., & Subrahmanyam, Y. V. (2003). Decolorization and degradation of H-acid and other dyes using ferrous-hydrogen peroxide system. Chemosphere, 50, 619–625.

    Article  CAS  Google Scholar 

  • Tan, B. H., Teng, T. T., & Omar, A. K. M. (2000). Removal of dyes and industrial dye wastes by magnesium chloride. Water Research, 34, 597–601.

    Article  CAS  Google Scholar 

  • Tor, A., & Cengeloglu, Y. (2006). Removal of congo red from aqueous solution by adsorption onto acid activated red mud. Journal of Hazardous Materials, 138, 409–415.

    Article  CAS  Google Scholar 

  • Tor, A., Danaoglu, N., Arslan, G., & Cengeloglu, Y. (2009). Removal of fluoride from water by using granular red mud: batch and column studies. Journal of Hazardous Materials, 164, 271–278.

    Article  CAS  Google Scholar 

  • Vandevivere, P. C., Bianchi, R., & Verstraete, W. (1998). Treatment and reuse of wastewater from the textile wet-processing industry: review of emerging technologies. Journal of Chemical Technology and Biotechnology, 72, 289–302.

    Article  CAS  Google Scholar 

  • Wang, S., Boyjoo, Y., Chouei, A., & Zhu, Z. H. (2005). Removal of dyes from aqueous solution using fly ash and red mud. Water Research, 39, 129–138.

    Article  CAS  Google Scholar 

  • Wang, S., Ang, H. M., & Tade, M. O. (2008). Novel applications of red mud as coagulant, adsorbent and catalyst for environmentally benign processes. Chemosphere, 72, 1621–1635.

    Article  CAS  Google Scholar 

  • Zhang, S., Liu, C., Luan, Z., Peng, X., Rena, H., & Wang, J. (2008). Arsenate removal from aqueous solutions using modified red mud. Journal of Hazardous Materials, 152, 486–492.

    Article  CAS  Google Scholar 

  • Zhang, Y., Li, Y., Yang, L., Ma, X., Wang, L., Ye, Z., & J. (2010). Characterization and adsorption mechanism of Zn2+ removal by PVA/EDTA resin in polluted water. Journal of Hazardous Materials, 178, 1046–1054.

    Article  CAS  Google Scholar 

  • Zhang, Y., Chen, W., Lv, G., Lv, F., Chu, P. K., Guo, W., Cui, B., Zhang, R., & Wang, H. (2012). Adsorption of polyvinyl alcohol from wastewater by sintered porous red mud. Water Science and Tehnology, 65(11), 2055–2060.

    Article  CAS  Google Scholar 

  • Zheng, H., Wang, Y., Zheng, Y., Zhang, H., Liang, S. P., & Long, M. (2008). Equilibrium, kinetic and thermodynamic studies on the sorption of 4-hydroxyphenol on Cr- bentonite. Chemical Engineering Journal, 143(1–3), 117–123.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Alum Tulcea, Romania, for the support granted to this research (for the red mud residue samples and XRD and XRF analyses).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carolina Constantin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bacioiu, IG., Stoica, L., Constantin, C. et al. Removal of Tartrazine from Aqueous Solution by Adsorption on Activated Red Mud. Water Air Soil Pollut 228, 298 (2017). https://doi.org/10.1007/s11270-017-3469-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-017-3469-3

Keywords

Navigation