Skip to main content
Log in

Modified Well-Field Configurations for Improved Performance of Contaminant Elution and Tracer Tests

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Contaminant elution and tracer (CET) tests are one method for characterizing the impact of mass transfer, transformation, and other attenuation processes on contaminant transport and mass removal for subsurface systems. The purpose of the work reported herein is to explore specific well-field configurations for improving CET tests by reducing the influence of preferential flow and surrounding plume effects. Three injection-extraction well configurations were tested for different domain conditions using a three-dimensional numerical model. The three configurations were the traditional configuration with a single pair of injection-extraction wells, modified configuration I with one extraction well located between two injection wells, and modified configuration II with two pairs of injection-extraction couplets (one nested within the other). Elution curves for resident contaminant and breakthrough curves from simulated tracer tests were examined for specific landmarks such as the presence and extent of steady state (relatively high concentrations) and asymptotic (asymptotic decrease to low concentrations) phases, as well as distinct changes in slope. Temporal moment analysis of the breakthrough curves was conducted to evaluate mass recovery. Effective diffusion coefficients were obtained by fitting selected functions to the elution curves. Based on simulation results for a homogeneous domain, full isolation of the inner extraction well from the surrounding plume was obtained for the modified configuration II, whereas the extraction wells are impacted by the surrounding plume for the other two configurations. Therefore, configuration II was used for additional simulations conducted with layered and heterogeneous domains. Tracer test simulations for homogeneous and layered domains indicate 100% mass recovery for the inner extraction well. For the heterogeneous domain, decreasing the distance between the inner injection-extraction well couplet and adjusting the pumping rate distribution between the two extraction wells increased the mass recovery from 69 to 99%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Air Force Center for Engineering and the Environment (AFCEE). (2007). Source zone initiative. Brooks AFB: Author.

    Google Scholar 

  • Bahr, J. M. (1989). Analysis of nonequilibrium desorption of volatile organics during field test of aquifer decontamination. Journal of Contaminant Hydrology, 43, 205–222.

    Article  Google Scholar 

  • Ball, W. P., Liu, C., Xia, G., & Young, D. F. (1997). A diffusion-based interpretation of tetrachloroethene and trichloroethene concentration profiles in a groundwater aquitard. Water Resources Research, 33, 2741–2757.

    Article  CAS  Google Scholar 

  • Basu, N. B., Rao, P. S. C., Poyer, I. C., Annable, M. D., & Hatfield, K. (2006). Flux-based assessment at a manufacturing site contaminated with trichloroethylene. Journal of Contaminant Hydrology, 86(1–2), 105–127.

    Article  CAS  Google Scholar 

  • Blue, J.E., Brusseau, M.L., & Srivastava, R. (1998). Simulating tracer and resident contaminant transport to investigate the reduced efficiency of a pump-and-treat operation. Groundwater quality: remediation and protection (Proceedings of the GQ ‘98 Conference Held at Tubingen, Germany, September 1998. IAHS Publication no. 250, 537–543.

  • Bockelmann, A., Ptak, T., & Teutsch, G. (2001). An analytical quantification of mass fluxes and natural attenuation rate constants at a former gasworks site. Journal of Contaminant Hydrology, 53, 429–453.

    Article  CAS  Google Scholar 

  • Borden, R. C., Daniel, R. A., LeBrun IV, L. E., & Davis, C. W. (1997). Intrinsic biodegradation of MTBE and BTEX in a gasoline-contaminated aquifer. Water Resources Research, 33(5), 1105–1115.

    Article  CAS  Google Scholar 

  • Brogan, S. D., & Gailey, R. M. (1995). A method for estimating field-scale mass transfer rate parameters and assessing aquifer clean-up times. Ground Water, 33(6), 997–1009.

    Article  CAS  Google Scholar 

  • Brusseau, M. L. (1993). The influence of solute size, pore-water velocity, and intraparticle porosity on solute dispersion and transport in soil. Water Resources Research, 29(4), 1071–1080.

    Article  CAS  Google Scholar 

  • Brusseau, M. L. (1998). Nonideal transport of reactive solutes in heterogeneous porous media: 3. analyzing field data with mathematical models. Journal of Hydrology, 209(1–4), 147–165.

    Article  CAS  Google Scholar 

  • Brusseau, M. L. (2017). The Integrated Contaminant Elution and Tracer Test Toolkit ICET : Improved Characterization of Mass Transfer, Attenuation, and Mass Removal. Presented for the Risk eLearning Webinar Series– Analytical Tools and Methods: Session III – Fate and Transport of Contaminants. https://cluin.org/conf/tio/SRPAnalyticalT&M3_061217/slides/3Slide_Presentation_for_Mark_Brusseau,_University_of_Arizona.pdf. Accessed 10 Feb 2017

  • Brusseau, M. L., Rohrer, J. W., Decker, T. M., Nelson, N. T., & Linderfelt, W. R. (1999a). Contaminant transport and fate in a source zone of a chlorinated-solvent contaminated superfund site: over view and initial results of an advanced site characterization project. In M. L. Brusseau, D. A. Sabatini, J. S. Gierke, & M. D. Annable (Eds.), Chapter 19 in. Innovative subsurface remediation: field testing of physical, chemical, and characterization technologies. Washington DC: American Chemical Society.

    Chapter  Google Scholar 

  • Brusseau, M. L., Hu, Q., Nelson, N. T., & Cain, R. B. (1999b). A diffusion tracer-test method for investigation the influence of mass transfer processes on field-scale solute transport. In M. L. Brusseau, D. A. Sabatini, J. S. Gierke, & M. D. Annable (Eds.), Chapter 18 in. Innovative subsurface remediation: field testing of physical, chemical, and characterization technologies. Washington DC: American Chemical Society.

    Chapter  Google Scholar 

  • Brusseau, M. L., Piatt, J., Wang, J., & Hu, M. Q. (1999c). A biotracer test for characterizing the in-situ biodegradation potential associated with subsurface systems. In M. L. Brusseau, D. A. Sabatini, J. S. Gierke, & M. D. Annable (Eds.), Chapter 17 in. Innovative subsurface remediation: field testing of physical, chemical, and characterization technologies. Washington DC: American Chemical Society.

    Chapter  Google Scholar 

  • Brusseau, M. L., Nelson, N. T., Zhang, Z., Blue, J. E., Rohrer, J., & Allen, T. (2007). Source-zone characterization of a chlorinated-solvent contaminant superfund site in Tucson, AZ. Journal of Contaminant Hydrology, 90, 21–40.

    Article  CAS  Google Scholar 

  • Brusseau, M. L., Carroll, K. C., Allen, T., Baker, J., DiGuiseppi, W., Hatton, J., Morrison, C., Russo, A., & Berkompas, J. (2011). The impact of in-situ chemical oxidation on contaminant mass discharge: linking source-zone and plume-scale characterizations of remediation performance. Environmental Science & Technology, 45, 5352–5358.

    Article  CAS  Google Scholar 

  • Brusseau, M. L., Matthieu III, D. E., Carroll, K. C., Mainhagu, J., Morrison, C., McMillan, A., et al. (2013). Characterizing long-term contaminant mass discharge and the relationship between reductions in discharge and reductions in mass for DNAPL source areas. Journal of Contaminant Hydrology, 49, 1–12.

    Article  Google Scholar 

  • Burbery, L. F., & Wang, F. (2010). A re-circulating tracer well test method for measuring reaction rates in fast-flowing aquifers: conceptual and mathematical model. Journal of Hydrology, 382, 163–173.

    Article  CAS  Google Scholar 

  • Burbery, L. F., Flintoft, M., & Close, M. E. (2013). Application of the re-circulating tracer well test method to determine nitrate reaction rates in shallow unconfined aquifers. Journal of Contaminant Hydrology, 145, 1–9.

    Article  CAS  Google Scholar 

  • Chapelle, F.H., Novak, J., Parker, J., Campbell, B.G., & Widdowson, M.A. (2007). A framework for assessing the sustainability of monitored natural attenuation. United States Geological Survey, Circular 1303. U.S. Department of the Interior. https://pubs.water.usgs.gov/circ1303. Accessed 10 Feb 2017.

  • Chapman, S. W., & Parker, B. L. (2005). Plume persistence due to aquitard back diffusion following dense nonaqueous phase liquid source removal or isolation. Water Resources Research, 41, W12411. doi:10.1029/2005WR004224.

    Google Scholar 

  • Cohen, R.M., Mercer, J.W., Greenwald, R.M., & Beljin, M.S. (1997). Design guideline for conventional pump-and-treat systems. EPA/540/S-97/504.

  • Cunningham, J. A., Werth, C. J., Reinhard, M., & Roberts, P. V. (1997). Effects of grain-scale mass transfer on the transport of volatile organics through sediments, 1, model development. Water Resources Research, 3312, 2713–2726.

    Article  Google Scholar 

  • Environmental Modeling Research Laboratory (EMRL). (2005). Groundwater Modeling System (GMS) version 6.5. Provo: Brigham Young University.

    Google Scholar 

  • Gandhi, R.K., Hopkins, G.D., Goltz, M.N., Gorelick, S.M., & McCarty, P.L. (2002). Full-scale demonstration of in situ cometabolic biodegradation of trichloroethylene in groundwater 1. Dynamics of a recirculating well system. Water Resources Research, 38, doi:10.1029/2001WR000379

  • Gutjahr, A. (1989). Fast Fourier transforms for random field generation, New Mexico Tech report, contract 4-RS of Los Alamos National Laboratory. Socorro: N. M. Inst. of Min. and Technol.

    Google Scholar 

  • Haggerty, R., McKenna, S. A., & Meigs, L. C. (2000). On the late-time behavior of tracer test breakthrough curves. Water Resources Research, 36(12), 3467–3479.

    Article  CAS  Google Scholar 

  • Harbaugh, A.W., Banta, E.R., Hill, M.C., & McDonald, M.G. 2000. MODFLOW-2000, The U.S. Geological Survey modular ground-water model-user guide to modularization concepts and the ground-water flow process. U.S. Geological Survey Open-File Report 00-92. Reston, VA. https://pubs.usgs.gov/of/2000/0092/report.pdf. Accessed 10 Feb 2017

  • Johnson, R. L., Cherry, J. A., & Pankow, J. F. (1989). Diffusive contaminant transport in natural clay: a field example and implications for clay-lined waste disposal sites. Environmental Science & Technology, 23, 340–349.

    Article  CAS  Google Scholar 

  • Johnston, C. D., Davis, G. B., Bastow, T. P., Annable, M. D., Trefry, M. G., Furness, A., Geste, Y., Woodbury, R. J., Rao, P. S. C., & Rohodes, S. (2013). The use of mass depletion-mass flux reduction relationships during pumping to determine source zone mass of reactive brominated-solvent DNAPL. Journal of Contaminant Hydrology, 144, 122–137.

    Article  CAS  Google Scholar 

  • Keely, J.F. (1989). Performance evaluations of pump-and-treat remediations. EPA/540/4-89/005.

  • King, M. W. G., Barker, J. F., Devlin, J. T., & Butler, B. J. (1999). Migration and natural fate of a coal tar creosote plume: 2. Mass balance and biodegradation indicators. Journal of Contaminant Hydrology, 39, 281–307.

    Article  CAS  Google Scholar 

  • Luo, J., & Kitanidis, P. K. (2004). Fluid residence times within a recirculation zone created by an extraction-injection well pair. Journal of Hydrology, 295(1–4), 149–162.

    Article  Google Scholar 

  • Luo, J., Wu, W.-M., Fienen, M. N., Jardine, P. M., Mehlhorn, T. L., Watson, D. B., Cirpka, O. A., Criddle, C. S., & Kitanidis, P. K. (2006). A nested-cell approach for in situ remediation. Ground Water, 44(2), 266–274.

    Article  CAS  Google Scholar 

  • Luo, J., Wu, W.-M., Carley, J., Ruan, C., Gu, B., Jardines, P. M., Criddle, C. S., & Kitanidis, P. K. (2007). Hydraulic performance analysis of a multiple injection-extraction well system. Journal of Hydrology, 336, 294–302.

    Article  Google Scholar 

  • McDade, J. M., Kulkarni, P. R., Seyedabbasi, M. A., Newell, C. J., Gandhi, D., Gallinatti, J. D., Cocianni, V., & Ferguson, D. J. (2013). Matrix diffusion modeling applied to long-term pump-and-treat data: 1. Method development. Remediation, 23(2), 71–91.

    Article  Google Scholar 

  • McDonald, M. G., & Harbaugh, A. W. (1988). A modular three-dimensional finite-difference ground-water flow model. Denver: U.S. Geological Survey Techniques of Water-Resources Investigations Chapter A1, 586 p.

    Google Scholar 

  • Nelson, N. T., Hu, Q., & Brusseau, M. L. (2003). Characterizing the contribution of diffusive mass transfer to solute transport in sedimentary aquifer systems at laboratory and field scales. Journal of Hydrology, 276, 275–286.

    Article  CAS  Google Scholar 

  • Newell, C. J., Rifai, H. S., Wilson, J. T., Connor, J. A., Aziz, J. A., & Suarez, M. P. (2002). Groundwater issue: calculation and use of first-order rate constants for monitored natural attenuation studies. EPA/540/S-02/500. Washington, DC: United States Environmental Protection Agency.

    Google Scholar 

  • NRC (National Research Council) (2013). Alternatives for managing the nation’s complex contaminated groundwater sites. Washington., DC. https://www.nap.edu/catalog/14668/alternatives-for-managing-thenations-complex-contaminated-groundwater-sites. Accessed 10 Feb 2017.

  • Parker, B. L., Gillham, R. W., & Cherry, J. A. (1994). Diffusive disappearance of immiscible phase organic liquids in fractured geologic media. Ground Water, 32, 805–820.

    Article  CAS  Google Scholar 

  • Parker, B. L., Cherry, J. A., & Chapman, S. W. (2004). Field study of TCE diffusion profiles below DNAPL to assess aquitard integrity. Journal of Contaminant Hydrology, 74, 197–230.

    Article  CAS  Google Scholar 

  • Rivett, M. O., Chapman, S. W., Allen-King, R. M., Feenstra, S., & Cherry, J. A. (2006). Pump-and-treat remediation of chlorinated solvent contamination at a controlled field-experiment site. Environmental Science & Technology, 40(21), 6770–6781.

    Article  CAS  Google Scholar 

  • Rumbaugh, J. O., & Rumbaugh, D. B. (2007). Groundwater vistas. Reinholds: Environmental Solutions Inc. www.groundwatermodels.com.

    Google Scholar 

  • Sandrin, S. K., Brusseau, M. L., Piatt, J. J., Bodour, A. A., Blanford, W. J., & Nelson, N. T. (2004). Spatial variability of in situ microbial activity: biotracer tests. Ground Water, 42(3), 374–383.

    Article  CAS  Google Scholar 

  • Satkin, R. L., & Bedient, P. B. (1988). Effectiveness of various aquifer restoration schemes under variable hydrogeologic conditions. Ground Water, 26(4), 488–498.

    Article  CAS  Google Scholar 

  • Schafer, W., & Kinzelbach, W. (1992). Stochastic modeling of in situ bioremediation in heterogeneous aquifers. Journal of Contaminant Hydrology, 10, 47–73.

    Article  Google Scholar 

  • SERDP (Strategic Environmental Research and Development Program) and ESTCP (Environmental Security Technology Certification Program) (2013). SERDP and ESTCP workshop on long term management of contaminated groundwater sites summary report. http://www.dtic.mil/dtic/tr/fulltext/u2/a618171.pdf. Accessed 10 Feb 2017.

  • Thorbjarnarson, K. W., & Mackay, D. M. (1997). A field test of tracer transport and organic contaminant elution in a stratified aquifer at the Rocky Mountain Arsenal (Denver, Colorado, U.S.A.) Journal of Contaminant Hydrology, 24, 287–312.

    Article  CAS  Google Scholar 

  • U.S. Environmental Protection Agency (2009). Understanding the use of models in predicting the effectiveness of proposed remedial actions at superfund sediment sites. OSWER Directive 9200.1-96FS. Office of Superfund Remediation and Technology Innovation; November. https://nepis.epa.gov/Exe/ZyPDF.cgi/P100GM8A.PDF?Dockey=P100GM8A.PDF. Accessed 10 Feb 2017.

  • Zhang, Z., & Brusseau, M. L. (1999). Nonideal transport of reactive solutes in heterogeneous porous media 5. Simulating regional-scale behavior of a trichloroethene plume during pump-and-treat remediation. Water Resources Research, 35(10), 2921–2935.

    Article  CAS  Google Scholar 

  • Zheng, C. (1990). MT3D: a modular three-dimensional transport model for simulation of advection, dispersion, and chemical reactions of contaminants in groundwater systems. Report 74280. U.S. EPA Robert S. Kerr Environmental Research Laboratory, Ada, OK, USA.

Download references

Acknowledgements

This research was supported by the National Institute of Environmental Health Sciences Superfund Research Program (P42 ES04940). We thank Dr. Jon Mainhagu for his help in drafting Fig. 1. We also thank the reviewers for their constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark L. Brusseau.

Electronic supplementary material

ESM 1

(PDF 501 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Z., Brusseau, M.L. Modified Well-Field Configurations for Improved Performance of Contaminant Elution and Tracer Tests. Water Air Soil Pollut 228, 261 (2017). https://doi.org/10.1007/s11270-017-3432-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-017-3432-3

Keywords

Navigation