Skip to main content

Advertisement

Log in

Influences of Nitrification Inhibitor 3,4-Dimethylpyrazole Phosphate on Heavy Metals and Inorganic Nitrogen Transformation in the Rice Field Surface Water

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Agricultural intensification has led to the use of high inputs of chemical fertilizers into rice-cultivated lands, and nitrogen and heavy metals in runoff loss from land were a major environmental problem. It is important to mitigate nitrogen and heavy metal pollution for the water body. The nitrogen and heavy metal transformation in the rice field surface water was studied by applied combined organic and inorganic nitrogen fertilizer plus the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) in the sandy loam paddy soil and blue clayey paddy soil. The results showed that, the application of DMPP in the rice field in organic and inorganic fertilizer combined application models decreased the heavy metal average concentration of total Cu, Zn, and Cd by 22.1 to 30.2, 33.1 to 36.9, and 10.9 to 17.5% in surface water, respectively. Furthermore, in the sandy loam paddy soil and blue clayey paddy soil, the nitrate, nitrite, and total inorganic nitrogen concentrations decreased by 44.4 and 59.6, 90.3 and 88.6, and 14.2 and 25.4% in the rice field surface water with the DMPP addition, in the organic and inorganic fertilizer combined application models in the rice field, respectively. DMPP could be used as an effective nitrification inhibitor to decline the potential nitrogen and heavy metals runoff loss in the combined application models of organic and inorganic fertilizers in some rice fields, minimizing the nitrogen and heavy metal transformation risk from agricultural fields to the water body and being beneficial for protecting the ecological environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Azeez, J. O., & Van Averbeke, W. (2010). Nitrogen mineralization potential of three animal manures applied on a sandy clay loam soil. Bioresource Technology, 101, 5645–5651.

    Article  CAS  Google Scholar 

  • Barth, G., Von Tucher, S., & Schmidhalter, U. (2008). Effectiveness of 3, 4-dimethylpyrazole phosphate as nitrification inhibitor in soil as influenced by inhibitor concentration application form and soil matric potential. Pedosphere, 18, 378–385.

    Article  CAS  Google Scholar 

  • Boeckx, P., Xu, X., & Van Cleemput, O. (2005). Mitigation of N2O and CH4 emission from rice and wheat cropping systems using dicyandiamide and hydroquinone. Nutrient Cycling in Agroecosystems, 72, 41–49.

    Article  CAS  Google Scholar 

  • Bolan, N. S., Adriano, D. C., & Curtin, D. (2003). Soil acidification and liming interactions with nutrient and heavy metal transformation and bioavailability. Advances in Agronomy, 78, 215–272.

    Article  CAS  Google Scholar 

  • Bradl, H. B. (2004). Adsorption of heavy metal ions on soils and soils constituents. J. Colloid Interf. Sci., 277(1), 1–8.

    Article  CAS  Google Scholar 

  • Chen, D. L., Chalk, P. M., Freney, J. R., & Luo, Q. X. (1998). Nitrogen transformations in a flooded soil in the presence and absence of rice plants: 1 nitrification. Nutrient Cycling in Agroecosystems, 51, 259–267.

    Article  Google Scholar 

  • Chen, X. M., Shen, Q. R., Pan, G. X., & Liu, Z. P. (2003). Characteristics of nitrate horizontal transport in a paddy field of the Tai Lake region China. Chemosphere, 50, 703–706.

    Article  CAS  Google Scholar 

  • De Datta, S. K. (1995). Nitrogen transformations in wetland rice ecosystems. Fertil. Res., 42, 193–203.

    Article  CAS  Google Scholar 

  • Deng, M. H., Shi, X. J., Tian, Y. H., Yin, B., Zhang, S. L., Zhu, Z. L., & Kimura, S. D. (2012). Optimizing nitrogen fertilizer application for rice production in the Taihu Lake region China. Pedosphere, 22(1), 48–57.

    Article  CAS  Google Scholar 

  • Di, H. J., & Cameron, K. C. (2003). Mitigation of nitrous oxide emissions in spray irrigated grazed grassland by treating the soil with dicyandiamide a nitrification inhibitor. Soil Use. Manage., 19, 284–290.

    Article  Google Scholar 

  • Dittert, K., Bol, R., King, R., Chadwick, D., & Hatch, D. (2001). Use of a novel nitrification inhibitor to reduce nitrous oxide emission from 15N-labelled dairy slurry injected into soil. Rapid Com. Mass. Spectr., 15, 1291–1296.

    Article  CAS  Google Scholar 

  • Eaton, A. D., Clesceri, L. S., & Greenburg, A. E. (1995). Standard methods for examination of wastewater (19th ed.). Washington, DC: American Public Health Association.

    Google Scholar 

  • Fan, M., Lu, S., Jiang, R., Liu, X., Zeng, X., Goulding, K. T., & Zhang, F. (2007). Nitrogen input 15N balance and mineral N dynamics in a riceewheat rotation in southwest China. Nutrient Cycling in Agroecosystems, 79, 255–265.

    Article  CAS  Google Scholar 

  • Fettweis, U., Mittelstaedt, W., Schimansky, C., & Fuhr, F. (2001). Lysimeter experiments on the translocation of the carbon-14-labelled nitrification inhibitor 3,4-dimethyl pyrazole phosphate (DMPP) in a gleyic cambisol. Biology and Fertility of Soils, 34, 126–130.

    Article  CAS  Google Scholar 

  • Geisseler, D., & Scow, K. M. (2014). Long-term effects of mineral fertilizers on soil microorganisms—a review. Soil Biology and Biochemistry, 75, 54–63.

    Article  CAS  Google Scholar 

  • Gilsanz, C., Báez, D., Misselbrook, T. H., Dhanoa, M. S., & Cárdenas, L. M. (2016). Development of emission factors and efficiency of two nitrification inhibitors DCD and DMPP. Agriculture, Ecosystems & Environment, 216(15), 1–8.

    Article  CAS  Google Scholar 

  • Guo, Y., Di, H., Cameron, K., Li, B., Podolyan, A., Moir, J., Monaghan, R., Smith, L. C. O., Callaghan, M., Bowatte, S., Waugh, D., & He, J. Z. (2013). Effect of 7-year application of a nitrification inhibitor dicyandiamide (DCD) on soil microbial biomass protease and deaminase activities and the abundance of bacteria and archaea in pasture soils. Journal of Soils and Sediments, 13, 753–759.

    Article  CAS  Google Scholar 

  • Hatch, D., Trindade, H., Cardenas, L., Carneiro, J., Hawins, J., Scholefield, D., & Chadwick, D. (2005). Laboratory study of the effects of two nitrification inhibitors on greenhouse gas emissions from a slurry-treated arable soil: Impact of diurnal temperature cycle. Biology and Fertility of Soils, 41, 225–232.

    Article  CAS  Google Scholar 

  • Kleineidam, K., Košmrlj, K., Kublik, S., Palmer, I., Pfab, H., Ruser, R., Fiedler, S., & Schlote, M. (2011). Influence of the nitrification inhibitor 3, 4-dimethylpyrazole phosphate (DMPP) on ammonia-oxidizing bacteria and archaea in rhizosphere and bulk soil. Chemosphere, 84, 182–186.

    Article  CAS  Google Scholar 

  • Kumar, R. R., Park, B. J., & Cho, J. Y. (2013). Application and environmental risks of livestock manure. J. Korean So. Appl. Biol. Chem., 56, 497–503.

    Article  Google Scholar 

  • Kundu, D. K., & Ladha, J. K. (1999). Sustaining productivity of lowland rice soils: issues and options related to N availability. Nutrient Cycling in Agroecosystems, 53, 19–33.

    Article  Google Scholar 

  • Lehoczky, E., Marth, P., Szabados, I., & Szomolanyi, A. (2000). The cadmium uptake by lettuce on contaminated soils as influenced by liming. Communications in Soil Science and Plant Analysis, 31, 2433–2438.

    Article  CAS  Google Scholar 

  • Li, Y., Chen, Y., Wu, C., Tang, X., & Ji, X. (2015). Determination of optimum nitrogen application rates in Zhejiang Province China based on rice yields and ecological security. J. Integr. Agri., 14(12), 2426–2433.

    Article  CAS  Google Scholar 

  • Linquist, B. A., Liu, L., Kessel, C. V., & Groenigen, K. J. V. (2013). Enhanced efficiency nitrogen fertilizers for rice systems: meta-analysis of yield and nitrogen uptake. Field Crops Research, 154, 246–254.

    Article  Google Scholar 

  • Loosemore, N., Straczek, A., Hinsinger, P., & Jaillard, B. (2004). Zinc mobilisation from a contaminated soil by three genotypes of tobacco as affected by soil and rhizosphere pH. Plant and Soil, 260, 19–32.

    Article  CAS  Google Scholar 

  • Lopes, C., Herva, M., Francouría, A., & Roca, E. (2011). Inventory of heavy metal content in organic waste applied as fertilizer in agriculture: evaluating the risk of transfer into the food chain. Environmental Science and Pollution Research, 18(6), 918–939.

    Article  CAS  Google Scholar 

  • Lu, R. K. (1999). Analytical methods of soil agricultural chemistry. Beijing: China Agricultural Science and Technology Press (in Chinese).

    Google Scholar 

  • Luo, L., Ma, Y., Zhang, S., Wei, D., & Zhu, Y. (2009). An inventory of trace element inputs to agricultural soils in China. Journal of Environmental Management, 90(8), 2524–2530.

    Article  CAS  Google Scholar 

  • Menéndez, S., Merino, P., Pinto, M., González-Mura, C., & Estavillo, J. M. (2006). 3,4-Dimethylpyrazol phosphate effect on nitrous oxide nitric oxide ammonia and carbon dioxide emissions from grasslands. Journal of Environmental Quality, 35, 973–981.

    Article  Google Scholar 

  • Menéndez, S., Merino, P., Pinto, M., González-Murua, C., & Estavillo, J. M. (2009). Effect of N-(n-butyl) thiophosphoric triamide and 3,4-dimethylpyrazole phosphate on gaseous emissions from grasslands under different soil water contents. Journal of Environmental Quality, 38, 27–35.

    Article  Google Scholar 

  • Menéndez, S., Barrena, I., Setien, I., González-Murua, C., & Estavillo, J. M. (2012). Efficiency of nitrification inhibitor DMPP to reduce nitrous oxide emissions under different temperature and moisture conditions. Soil Biology and Biochemistry, 53, 82–89.

    Article  Google Scholar 

  • Merino, P., Menéndez, S., Pinto, M., González-Murua, C., & Estavillo, J. M. (2005). DMPP reduces nitrous oxide emissions from grassland after slurry application. Soil Use and Management, 21, 53–57.

    Article  Google Scholar 

  • Nicholson, F. A., Smith, S. R., Alloway, B. J., Carlton-Smith, C., & Chambers, B. J. (2003). An inventory of heavy metals inputs to agricultural soils in England and Wales. The Science of the Total Environment, 311(1–3), 205–219.

    Article  CAS  Google Scholar 

  • Pereira, J., Fangueiro, D., Chadwick, D., Misselbrook, T. H., Coutinho, J., & Trindade, H. (2010). Effect of cattle slurry pre-treatment by separation and addition of nitrification inhibitors on gaseous emissions and N dynamics: a laboratory study. Chemosphere, 79(6), 620–627.

    Article  CAS  Google Scholar 

  • Slangen, J. H. G., & Kerkhoff, P. (1984). Nitrification inhibitors in agriculture and horticulture: a literature review. Fert. Res., 5, 1–76.

    Article  CAS  Google Scholar 

  • Smith, I., & Schallenberg, M. (2013). Occurrence of the agricultural nitrification inhibitor dicyandiamide in surface waters and its effects on nitrogen dynamics in an experimental aquatic system. Agriculture, Ecosystems & Environment, 164, 23–31.

    Article  CAS  Google Scholar 

  • Tian, Y. H., Yin, B., Yang, L. Z., Yin, S. X., & Zhu, Z. L. (2007). Nitrogen runoff and leaching losses during rice-wheat rotations in Taihu Lake region China. Pedosphere, 17(4), 445–456.

    Article  CAS  Google Scholar 

  • Tyler, G., & Olsson, T. (2001). Plant uptake of major and minor mineral elements as influenced by soil acidity and liming. Plant and Soil, 230, 307–321.

    Article  CAS  Google Scholar 

  • Uchimiya, M., Lima, I. M., Klasson, K. T., & Wartelle, L. H. (2010). Contaminant immobilization and nutrient release by biochar soil amendment: roles of natural organic matter. Chemosphere, 80, 935–940.

    Article  CAS  Google Scholar 

  • Wang, G., & Zhou, L. (2017). Application of green manure and pig manure to Cd-contaminated paddy soil increases the risk of Cd uptake by rice and Cd downward migration into groundwater: field micro-plot trials. Water, Air, and Soil Pollution, 228, 29. doi:10.1007/s11270-016-3207-2.

    Article  Google Scholar 

  • Wang, H., Dong, Y., Yang, Y., Toor, G. S., & Zhang, X. (2013). Changes in heavy metal contents in animal feeds and manures in an intensive animal production region of China. Journal of Environmental Sciences (China), 25, 2435–2442.

    Article  CAS  Google Scholar 

  • Welten, B. G., Ledgard, S. F., Schipper, L. A., Waller, J. E., Kear, M. J., & Dexter, M. M. (2013). Effects of prolonged oral administration of dicyandiamide to dairy heifers on excretion in urine and efficacy in soil. Agriculture, Ecosystems & Environment, 173, 28–36.

    Article  CAS  Google Scholar 

  • Wu, J., Yu, X., Malik, Z., Chen, H., & Xu, J. (2010). Impacts of copper on rice growth and yield as affected by pig manure. In J. Xu & P. M. Huang (Eds.), Molecular environmental soil science at the interfaces in the earth’s critical zone (pp. 141–143). Berlin: Springer.

    Chapter  Google Scholar 

  • Wu, L., Tan, C., Liu, L., Zhu, P., Peng, C., Luo, Y., & Christie, P. (2012). Cadmium bioavailability in surface soils receiving long-term applications of inorganic fertilizers and pig manure. Geoderma, 173-174(2), 224–230.

    Article  CAS  Google Scholar 

  • Wuana, R. A., & Okieimen, F. E. (2011). Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecology, 2011, 1–20.

  • Yang, M., Fang, Y., Sun, D., & Shi, Y. (2016). Efficiency of two nitrification inhibitors (dicyandiamide and 3,4-dimethypyrazole phosphate) on soil nitrogen transformations and plant productivity: A meta-analysis. Scientific Reports, 6, 22075.

    Article  CAS  Google Scholar 

  • Yoon, C. G. (2009). Wise use of paddy rice fields to partially compensate for the loss of natural wetlands. Paddy and Water Environment, 7, 357–366.

    Article  Google Scholar 

  • Yu, Q., Chen, Y., Ye, X., Zhang, Q., Zhang, Z., & Tian, P. (2007). Evaluation of nitrification inhibitor 3,4-dimethyl pyrazole phosphate on nitrogen leaching in undisturbed soil columns. Chemosphere, 67, 872–878.

    Article  CAS  Google Scholar 

  • Yu, Q., Ye, X., Chen, Y., Zhang, Z., & Tian, G. (2008). Influences of nitrification inhibitor 3,4-dimethyl pyrazole phosphate on nitrogen and soil salt-ion leaching. J. Environ. Sci. China, 20, 304–308.

    Article  CAS  Google Scholar 

  • Zeng, F., Wei, W., Li, M., Huang, R., Yang, F., & Duan, Y. (2015). Heavy metal contamination in rice-producing soils of Hunan province, China and potential health risks. International Journal of Environmental Research and Public Health, 12(12), 15584–15593.

    Article  CAS  Google Scholar 

  • Zerulla, W., Barth, T., Dressel, J., Erhardt, K., von Locquenghien, K. H., Pasda, G., Rädle, M., & Wissemeier, A. H. (2001). 3,4-dimethyphyrazle phosphate a new nitrification inhibitor for agriculture and horticulture. Biology and Fertility of Soils, 34, 118–125.

    Article  Google Scholar 

  • Zhao, B., Maeda, M., Zhang, J., Zhu, A., & Ozaki, Y. (2005). Accumulation and chemical fractionation of heavy metals in andisols after a different 6-year fertilization management. Environmental Science and Pollution Research, 13, 90–97.

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Key Research and Development Program of China (Grant No. 2016YFD0800500), the Key Research and Development Program of Zhejiang province (Grant Nos. 2015C02011, 2015C02013), and the National Natural Science Foundation of the People’s Republic of China (Grant No. 31172030).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiaogang Yu or Junwei Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Q., Ma, J., Sun, W. et al. Influences of Nitrification Inhibitor 3,4-Dimethylpyrazole Phosphate on Heavy Metals and Inorganic Nitrogen Transformation in the Rice Field Surface Water. Water Air Soil Pollut 228, 162 (2017). https://doi.org/10.1007/s11270-017-3352-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-017-3352-2

Keywords

Navigation