Skip to main content

Advertisement

Log in

Ecotoxicological Assessment of Phosphate Recyclates from Sewage Sludges

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Sewage sludge contains valuable plant nutrients, especially phosphorus. But unfortunately, it also contains pollutants which are hazardous for the environment. Phosphorus recovery from sewage sludge and its agricultural valorisation in recycling fertilisers based or containing recovered phosphate provides opportunities to minimise negative environmental effects caused by direct sludge application or conventional fertilisation. For validation, crystallised (struvite) and thermally treated phosphate recyclates (PRs) were chemically analysed, ecotoxicologically assessed and compared with a conventional phosphate fertiliser (triple superphosphate (TSP)). Three test species covering the environmental compartments water, sediment and soil were applied to evaluate the acute toxic effects of the phosphate fertiliser samples in laboratory tests (Lemna minor, Gammarus fossarum, Eisenia fetida). The assessment and comparison showed that TSP was more toxic than the PRs at the higher tested concentrations, probably due to a higher water solubility and not to chemical composition. Higher concentrations of the crystallised PRs caused mostly a slightly higher negative effect on tested parameters of the duckweed and the freshwater amphipod than the thermally treated PRs. Agronomical relevant application amounts of all PRs and TSP (worst-case scenario) might not have an acute toxic effect on the soil invertebrates. The PRs might have minor effects on the growth of L. minor, and TSP might negatively affect the survival of the freshwater amphipods. Recovered phosphate-containing materials (PRs), in particular struvite, proved to be of high quality and low hazard in a relative risk ranking; thus, it could be one of the future alternatives of phosphorus fertilisation in agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abbiramy, K. S. K., Ross, P. R., & Paramanandham, J. P. (2013). Assessment of acute toxicity of superphosphate to Eisenia foetida using paper contact method. Asian Journal of Plant Science and Research, 3, 112–115.

    Google Scholar 

  • AbfKlärV (1992). Klärschlammverordnung (Sewage Sludge Regulation). Federal Law Gazette, BGBl. I (15.04.1992, last updated 31.08.2015) (in German).

  • Alvarenga, P., Mourinha, C., Farto, M., Palma, P., Sengo, J., Morais, M. C., & Cunha-Queda, C. (2016). Ecotoxicological assessment of the potential impact on soil porewater, surface and groundwater from the use of organic wastes as soil amendments. Ecotoxicology and Environmental Safety, 126, 102–110.

    Article  CAS  Google Scholar 

  • BioAbfV (1998). Verordnung über die Verwertung von Bioabfällen auf landwirtschaftlich, forstwirtschaftlich und gärtnerisch genutzten Böden - Bioabfallverordnung (Regulation regarding the revovery of bio-waste used on agricultural, forestry and horticultural soils - Biological Waste Regulation). Federal Law Gazette, BGBl. I (21.09.1998, last updated 05.12.2013) (in German).

  • BMUB (2017). Deutschland soll Phosphor aus Klärschlamm gewinnen (Phosphorus recovery from sewage sludge in Germany). Press release of the Federal Ministry for the Environment, Nature Conservation, Building and Nuclear Safety, No 017/17, 18.01.2017, Berlin, Germany (in German).

  • Bradford-Hartke, Z., Lane, J., Lant, P., & Leslie, G. (2015). Environmental benefits and burdens of phosphorus recovery from municipal wastewater. Environmental Science & Technology, 49, 8611–8622.

    Article  CAS  Google Scholar 

  • CDU, CSU & SPD (2013). Deutschlands Zukunft gestalten - Koalitionsvertrag zwischen CDU/CSU und SPD, 18. Legislaturperiode (Shaping Germany's Future - Coalition treaty between CDU/CSU and SPD, 18th legislative period). 27.11.2013, Berlin, Germany.

  • Chen, W., Chang, A. C., & Wu, L. (2007). Assessing long-term environmental risks of trace elements in phosphate fertilizers. Ecotoxicology and Environmental Safety, 67, 48–58.

    Article  CAS  Google Scholar 

  • Cordell, D., Drangert, J.-O., & White, S. (2009). The story of phosphorus: Global food security and food for thought. Global Environmental Change, 19, 292–305.

    Article  Google Scholar 

  • DIN (2002). DIN EN 12457–1: Characterization of waste - Leaching; Compliance test for leaching of granular and sludges - Part 1: One stage batch test at a liquid to solid ration of 2 l/kg with particle size below 4 mm (without or with size reduction).

  • Donatello, S., & Cheeseman, C. R. (2013). Recycling and recovery routes for incinerated sewage sludge ash (ISSA): a review. Waste Management, 33, 2328–2340.

    Article  CAS  Google Scholar 

  • DüMV (2012). Verordnung über das Inverkehrbringen von Düngemitteln, Bodenhilfsstoffen, Kultursubstraten und Pflanzenhilfsmitteln - Düngemittelverordnung (Regulation regarding the placing on the market of fertilisers, soil additives, growing media and plant growth additives - Fertiliser Ordinance). Federal Law Gazette, BGBl. I (05.12.2012, last updated 27.05.2015) (in German).

  • Egle, L., Rechberger, H., & Zessner, M. (2015). Overview and description of technologies for recovering phosphorus from municipal wastewater. Resources Conservation and Recycling, 105, 325–346.

    Article  Google Scholar 

  • EPA (1996). Ecological effects test guidelines. Gammarid acute toxicityt. OPPTS 850.1020. United States Environmental Protection Agency.

  • ICL Fertilizers (2012). Knowledge Center: Material Safety Data Sheets (MSDS) about ICL Fertilizer: superphosphate (SSP) & triplesuperphosphate (TSP). ICL Fertilizers Deutschland GmbH, Ludwigshafen, Germany.

  • Galdos, M. V., De Maria, I. C., de Camargo, O. A., & Dechen, S. C. F. (2009). Sewage sludge application on cultivated soils: effects on runoff and trace metal load. Scientia Agricola, 66, 368–376.

    Article  CAS  Google Scholar 

  • Gerhardt, A., Svensson, E., Clostermann, M., & Fridlund, B. (1994). Monitoring of behavioral patterns of aquatic organisms with an impedance conversion technique. Environment International, 20, 209–219.

    Article  Google Scholar 

  • Gerhardt, A., Carlsson, A., Ressemann, C., & Stich, K. P. (1998). New online biomonitoring system for Gammarus pulex (L.) (Crustacea): in situ test below a copper effluent in South Sweden. Environmental Science & Technology, 32, 150–156.

    Article  CAS  Google Scholar 

  • Herzel, H., Adam, C., Stemann, J., Eicher, N., Hermann, L., Mallon, J. & Schaaf, M. (2015). Deliverable D 4.1: technical comparison on the design, operation and performances of ash processes. EU-project: P-REX Sustainable sewage sludge management fostering phosphorus recovery and energy efficiency (No. 308645).

  • IHCP (2003). Technical Guidance Document on Risk Assessment - Part II: Environmental Risk Assessment. Institute for Health and Consumer Protection, Joint Research Centre of the EU Commission, Ispra, Italy.

  • ISO (2005). ISO 20079: Water Quality. Determination of the toxic effect of water constituents and waste water on duckweed (Lemna minor). Duckweed growth inhibition test. International Organization of Standardization. Geneva, Switzerland.

  • ISO (2008). ISO 17512–1: Soil quality. Avoidance test for determining the quality of soils and effects of chemicals on behaviour. Part 1: Test with earthworms (Eisenia fetida and Eisenia andrei). International Organization of Standardization. Geneva, Switzerland.

  • Jaffer, Y., Clark, T. A., Pearce, P., & Parsons, S. A. (2002). Potential phosphorus recovery by struvite formation. Water Research, 36, 1834–1842.

    Article  CAS  Google Scholar 

  • Kabbe, C., Remy, C. & Kraus, F. (2015). Review of promising methods for phosphorus recovery and recycling from wastewater. Proceedings / International Fertiliser Society, 763.

  • Khater, A. E. M., & Al-Sewaidan, H. A. (2008). Radiation exposure due to agricultural uses of phosphate fertilizers. Radiation Measurements, 43, 1402–1407.

    Article  CAS  Google Scholar 

  • Kim, E., Yoo, S., Ro, H.-Y., Han, H.-J., Baek, Y.-W., Eom, I.-C., Kim, H.-M., Kim, P., & Choi, K. (2013). Aquatic toxicity assessment of phosphate compounds. Environmental Health and Toxicology, 28, e2013002.

    Article  Google Scholar 

  • Kraus, F. & Seis, W. (2015). Deliverable D 9.1: Quantitative risk assessment of potential hazards for humans and the environment: quantification of potential hazards resulting from agricultural use of the manufactured fertilizers. EU-project: P-REX Sustainable sewage sludge management fostering phosphorus recovery and energy efficiency (No. 308645).

  • KTBL (2005). Faustzahlen für die Landwirtschaft (Recommended levels for agriculture).13th Edition, Association for Technology and Structures in Agriculture (in German).

  • Le Corre, K. S., Valsami-Jones, E., Hobbs, P., & Parsons, S. A. (2009). Phosphorus recovery from wastewater by struvite crystallization: a review. Critical Reviews in Environmental Science and Technology, 39, 433–477.

    Article  CAS  Google Scholar 

  • Lee, B.-T., & Kim, K.-W. (2008). Arsenic accumulation and toxicity in the earthworm Eisenia fetida affected by chloride and phosphate. Environmental Toxicology and Chemistry, 27, 2488–2495.

    Article  CAS  Google Scholar 

  • Luczkiewicz, A. (2006). Soil and groundwater contamination as a result of sewage sludge land application. Polish Journal of Environmental Studies, 15, 869–876.

    CAS  Google Scholar 

  • Maenpaa, K. A., Kukkonen, J. V. K., & Lydy, M. J. (2002). Remediation of heavy metal-contaminated soils using phosphorus: evaluation of bioavailability using an earthworm bioassay. Archives of Environmental Contamination and Toxicology, 43, 0389–0398.

    Article  CAS  Google Scholar 

  • Murtaza, G., Javed, W., Hussain, A., Wahid, A., Murtaza, B., & Owens, G. (2015). Metal uptake via phosphate fertilizer and city sewage in cereal and legume crops in Pakistan. Environmental Science and Pollution Research, 22, 9136–9147.

    Article  CAS  Google Scholar 

  • Nziguheba, G., & Smolders, E. (2008). Inputs of trace elements in agricultural soils via phosphate fertilizers in European countries. Science of the Total Environment, 390, 53–57.

    Article  CAS  Google Scholar 

  • OECD (2000). OECD Guideline for the testing of chemicals 216: Soil Microorganisms. Nitrogen Transformation Test.

  • Oliva, J., Bernhardt, A., Reisinger, H., Domenig, M. & Krammer, H.-J. (2009). Klärschlamm – Materialien zur Abfallwirtschaft (Sewage Sludge - Materials for waste management). Report, REP-0221. Federal Environment Agency, Klagenfurt, Wien, Austria (in German).

  • Rahman, M. A., Hasegawa, H., Ueda, K., Maki, T., & Rahman, M. M. (2008). Arsenic uptake by aquatic macrophyte Spirodela polyrhiza L.: Interactions with phosphate and iron. Journal of Hazardous Materials, 160, 356–361.

    Article  CAS  Google Scholar 

  • Rastetter, N., & Gerhardt, A. (2017). Toxic potential of different types of sewage sludge as fertiliser in agriculture: ecotoxicological effects on aquatic, sediment and soil indicator species. Journal of Soils and Sediments, 17, 106–121.

    Article  CAS  Google Scholar 

  • Remy, C. & Jossa, P. (2015). Deliverable D 9.2: Life Cycle Assessment of selected processes for P recovery from sewage sludge, sludge liquor, or ash. EU-project: P-REX Sustainable sewage sludge management fostering phosphorus recovery and energy efficiency (No. 308645).

  • Saueia, C. H., Mazzilli, B. P., & Favaro, D. I. T. (2005). Natural radioactivity in phosphate rock, phosphogypsum and phosphate fertilizers in Brazil. Journal of Radioanalytical and Nuclear Chemistry, 264, 445–448.

    Article  Google Scholar 

  • Simplício, N., Muniz, D., Rocha, F., Martins, D., Dias, Z., Farias, B., & Oliveira-Filho, E. (2017). Comparative analysis between ecotoxicity of nitrogen-, phosphorus-, and potassium-based fertilizers and their active ingredients. Toxics, 5, 2.

    Article  Google Scholar 

  • Stemann, J., Niewersch, C., Ewert, W., Kabbe, C., Hermanussen, O., Mêlè, C., Paillard, H., Stössel, E. & Wagenbach, A. (2014). Deliverable D 5.1: Comparison of sludge related processes. EU-project: P-REX Sustainable sewage sludge management fostering phosphorus recovery and energy efficiency (No. 308645).

  • UBA (2015). Umweltbelastungen der Landwirtschaft: Kompost und Klärschlamm (Ecological Impact of Farming: Compost and Sewage Sludge). Federal Environment Agency, Dessau-Roßlau, Germany (in German). http://www.umweltbundesamt.de/themen/boden-landwirtschaft/umweltbelastungen-der- landwirtschaft/kompost-klaerschlamm

  • Wiechmann, B., Dienemann, C., Kabbe, C., Brandt, S., Vogel, I. & Roskosch, A. (2013). Sewage sludge management in Germany. Federal Environment Agency, Dessau-Roßlau, Germany.

  • Zimmermann, J. K. B. (2010) Kombination der mikrobiologischen Prozesse Bioleaching und saure Phosphorrückgewinnung sowie ihr Einsatz im Rahmen von Dekontamination und Rohstoffrückgewinnung aus schwermetallbelasteten Feststoffen (Combination of the microbiological processes bioleaching and acidic phosphorus recovery for the decontamination and nutrient recovery from heavy metal loaded solids). Ph.D. Thesis, RWTH Aachen University, Germany (in German).

Download references

Acknowledgements

We would like to thank LUFA Nord-West (Hameln, Germany), IASP (Berlin, Germany) and FHNW (Basel, Switzerland) for the chemical analysis of the phosphate recyclate samples; Matthias Eberius (Lemnatec, Aachen, Germany) for supporting our Lemna cultivation; Mr. Mütz/Mr. Krannich (composting plant, Singen, Germany) for providing compost of green waste for our earthworm tests and culture; and Claudius Leeser for the conduction of some earthworm avoidance tests and Lemna sp. growth inhibition tests. The project was funded by the European Commission under the Seventh Framework Programme (Priority: “From Prototype to Market”, Contract No. 308645 – P-REX) to LimCo International GmbH as project partner.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Rastetter.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rastetter, N., Rothhaupt, K.O. & Gerhardt, A. Ecotoxicological Assessment of Phosphate Recyclates from Sewage Sludges. Water Air Soil Pollut 228, 171 (2017). https://doi.org/10.1007/s11270-017-3331-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-017-3331-7

Keywords

Navigation