Skip to main content
Log in

Mobility and Bioavailability of Metals in Stream Sediments Impacted by Mining Activities: the Jaralito and the Mexicana in Sonora, Mexico

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

This study aims at investigating heavy metal mobility and bioavailability in sediments from the Mexicana and Jaralito streams, Northern Mexico. A chemical partition analysis (sequential extraction) was performed to determine geochemical phases in which metals are found. Geoaccumulation index (Igeo) and enrichment factor values were obtained from analytical results and geochemical baseline data. Sediments showed high concentrations (mg/kg) of Cd (below detection limit, BDL-3.50), Cr (3–41), Cu (238–1090), Fe (41267–61033), Mn (678–1143), Ni (18–35), Pb (51–124), and Zn (116–356). Metal concentrations in geochemical phases exhibited the following order: residual > interchangeable > Fe/Mn oxide > carbonate >organic matter/sulfide. Both streams presented high degree of enrichment for Cu, Fe, Mn, Ni, Pb, and Zn, indicating anthropic origin of these metals. Metal mobilities in Jaralito and the Mexicana were Fe > Cu > Mn > Pb > Zn > Ni > Cr and Fe > Cu > Mn > Zn > Ni > Pb > Cr > Cd, respectively. Jaralito and the Mexicana sediments exhibit a mostly gravel-sandy texture with higher metal contents than in fine fractions. Sediment Geoaccumulation index values suggest that Jaralito features moderate to strong contamination by Ni, Pb, and Cu, whereas the Mexicana features strong contamination by Cd, Cu, Pb, and moderate contamination by Ni, Pb, and Zn. The quality criteria comparisons (LEL and SEL) indicate these areas are contaminated by metals and represent a substantial environmental risk because of high metal mobility and availability. Future studies on water chemistry and biota are needed to fully assess pollution impact in the Jaralito and Mexicana streams. The probability of adverse biological effects from high metal levels in those streams confirms the urgency of implementing effective environmental management practices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alvarenga, P., Palma, P., Goncalves, A. P., Fernandes, R. M., Varennes, A., Vallini, G., Duarte, E., & Cunha-Queda, A. C. (2008). Evaluation of tests to assess the quality of mine-contaminated soils. Environmental Geochemistry and Health, 30, 95–99.

    Article  CAS  Google Scholar 

  • Asma, B. H., Sohail, K., Selim Reza, A. H. M., Mohammad, N. Z., Aminul, A., & Mamunur, R. (2013). Enrichment factor and geo-accumulation index of trace metals in sediments of the ship breaking area of Sitakund Upazilla (Bhatiary–Kumira), Chittagong, Bangladesh. Journal of Geochemical Exploration, 125, 130–137.

    Article  Google Scholar 

  • Baptista Neto, J. A., Gingele Franz, X., Thomas, L., & Brehme, I. (2006). Spatial distribution of heavy metals in surficial sediments from Guanabara Bay: Rio de Janeiro, Brazil. Environmental Geology, 49, 1051–1063.

    Article  CAS  Google Scholar 

  • Bibi, M. H., Faruque, A., & Hiroaki, I. (2007). Assessment of metal concentrations in lake sediments of southwest Japan based on sediment quality guidelines. Environmental Geology, 52(4), 1–15.

    Article  Google Scholar 

  • Bourennane, H., Douay, F., Sterckeman, T., Villanneau, E., Ciesielski, H., King, D., & Baize, D. (2010). Mapping of anthropogenic trace elements inputs in agricultural topsoil from Northern France using enrichment factors. Geoderma, 157, 165–174.

    Article  CAS  Google Scholar 

  • Cendejas-Cruz, R., Vázquez, M., & García-Cortés, J. A. (1998). Geología y yacimientos minerales de la Carta Cananea, Estado de Sonora, Clave H12-5, Escala 1:250,000. Compendios de Geología y Minería. México: Consejo de Recursos Minerales.

    Google Scholar 

  • Cevik, F., Münir, Z., Osman, B., & Özlem, F. (2009). An assessment of metal pollution in surface sediments of Seyhan dam by using enrichment factor, geoaccumulation index and statistical analyses. Environmental Monitoring and Assessment, 152, 309–317.

    Article  CAS  Google Scholar 

  • Chabukdhara, M., & Nema, A. K. (2012). Assessment of heavy metal contamination in Hindon River sediments: a chemometric and geochemical approach. Chemosphere, 87, 945–953.

    Article  CAS  Google Scholar 

  • Chandra, S. K., Chary, N. S., Kamala, C. T., Suman, Raj, D. S., & Sreenivasa, R. A. (2003). Fractionation studies and bioaccumulation of sediment bound heavy metals in Kolleru Lake by edible fish. Environmental International, 29, 1001–1008.

    Article  Google Scholar 

  • Combest, K.B. (1991). Trace metals in sediments: Spatial trends and sorption processes. Water Resources Bulletin 27: 19-28

  • Dang, Z., Liu, C., & Haigh, M. (2002). Mobility of heavy metals associated with the natural weathering of coal mine spoils. Environmental Pollution, 118, 419–426.

    Article  CAS  Google Scholar 

  • Davutluoglu, O. I., Seckin, G., Ersu, C. B., Yilmaz, T., & Sari, B. (2011). Heavy metal content and distribution in surface sediments of the Seyhan River, Turkey. Journal of Environmental Management, 92, 2250–2259.

    Article  CAS  Google Scholar 

  • De Gregori, I., Pinochet, H., Arancibia, M., & Vidal, A. (1996). Grain size effect on trace metals distribution in sediments from two coastal areas of Chile. Bulletin of Environmental Contamination Toxicology, 57(1), 163–170.

    Article  Google Scholar 

  • Dickinson, W. W., Dunbar, G. B., & McLeod, H. (1996). Heavy metal history from cores in Wellington Harbour, New Zealand. Environmental Geology, 27, 59–69.

    Article  CAS  Google Scholar 

  • Fan, W., Wang, W., Chen, J., Li, X., & Yen, Y.-F. (2002). Cu, Ni and Pb speciation surface sediments from a contaminated bay of northern China. Baseline/Marine Pollution Bulletin, 44, 816–832.

    Article  Google Scholar 

  • Folk, R. L. (1980). Petrology of sedimentary rocks. Austin: Hemphill Publishing Company.

    Google Scholar 

  • Fuentes, A., Lloréns, M., Sáez, J., Aguilar, M. I., Ortuño, J. F., & Meseguer, V. F. (2008). Comparative study of six different sludges by sequential speciation of heavy metals. Bioresource Technology, 99, 517–525.

    Article  CAS  Google Scholar 

  • Galán, E., Gómez-Ariza, J. L., González, I., Fernández-Caliani, J. C., Morales, E., & Giráldez, I. (2003). Heavy metal partitioning in river sediments severely polluted by acid mine drainage in the Iberian Pyrite Belt. Applied Geochemistry, 18, 409–421.

    Article  Google Scholar 

  • Ghrefat, H. A., Abu-Rukah, & Rosen, M. A. (2011). Application of geoaccumulation index and enrichment factor for assessing metal contamination in the sediments of Kafrain Dam, Jordan. Environmental Monitoring Assessment, 178(1–4), 95–109.

    Article  CAS  Google Scholar 

  • Giuliani, S., Romano, S., Turetta, C., Cu, N. H., Bellucci, L. G., Capodaglio, G., Mugnai, C., Nhon, D. H., & Frignani, M. (2011). Soils and sediments of the Thua Thien-Hue Province (central Vietnam): recognizing trace element sources and the likely influence of natural events. Journal of Environmental Monitoring, 13, 1383–1392.

    Article  CAS  Google Scholar 

  • Gómez-Álvarez, A., Valenzuela-García, J. L., Aguayo-Salinas, S., Meza-Figueroa, D., Ramírez-Hernández, J., & Ochoa-Ortega, G. (2007). Chemical partitioning of sediment contamination by heavy metals in the San Pedro river, Sonora, México. Chemical Speciation and Bioavailability, 9(1), 25–35.

    Article  Google Scholar 

  • Gómez-Álvarez, A., Meza-Figueroa, D., Villalba-Atondo, A. I., Valenzuela-García, J. L., Ramírez-Hernández, J., & Almendariz-Tapia, F. J. (2009). Estimation of potential pollution from mine tailings in the San Pedro River (1993–2005), México-U.S. Border. Environmental Geology, 57, 1469–1479.

    Article  Google Scholar 

  • Gómez-Álvarez, A., Valenzuela-García, J. L., Villalba-Atondo, A. I., Meza-Figueroa, D., Almendariz-Tapia, F. J., Whitaker-Bojórquez, T. O., Martínez-Morales, F., Valenzuela-Corral, M., & Ochoa-Valenzuela, L. E. (2011). Distribution of heavy metals and their chemical speciation from the Abelardo L. Rodríguez Dam, Sonora, México. Chemical Speciation and Bioavailability, 23(4), 201–212.

    Article  Google Scholar 

  • Gonzales, P., Felix, O., Caitlin, A., Lutz, E., Wendell, E., & Sáez, E. (2014). Laboratory dust generation and size-dependent characterization of metal and metalloid-contaminated mine tailings deposits. Journal of Hazardous Materials, 280, 619–626.

    Article  CAS  Google Scholar 

  • González, F., Silva, M., Schalscha, E., & Alay, F. (1998). Cadmium and lead in a trophic marine chain. Bulletin of Environmental Contamination Toxicology, 60, 112–118.

    Article  Google Scholar 

  • González, A. E., Rodríguez, M. T., Sánchez, J. C. J., Espinosa, A. J. F., & De La Rosa, F. J. B. (2000). Assessment of metals in sediments in a tributary of Guadalquivir river (Spain). Heavy metal partitioning and relation between the water and sediment system. Water Air, and Soil Pollution, 121(1–4), 11–29.

    Article  Google Scholar 

  • Han, Y. M., Cao, J. J., Wu, F., Zhang, B. C., Zhan, C. L., Wei, C., & Zhao, Z. Z. (2012). Geochemistry and environmental assessment of major and trace elements in the surface sediments of the Wei River, China. Journal of Environmental Monitoring, 14, 2762–2771.

    Article  CAS  Google Scholar 

  • Hongrui, M., Hua, L., & Ji, J. (2011). Speciation and phytoavailability of heavy metals in sediments in Nanjing section of Changjiang River. Environment and Earth Sciences, 64, 185–192.

    Article  Google Scholar 

  • Hudson-Edwards, K. A., Schell, C., & Macklin, M. G. (1999). Mineralogy and geochemistry of alluvium contaminated by metal mining in the Rio Tinto area, southwest Spain. Applied Geochemistry, 14, 1015–1030.

    Article  CAS  Google Scholar 

  • I.N.E.G.I. (Instituto Nacional de Estadística Geografia e Informática), (2010). Simulador de Corrientes Superficiales de la República Mexicana. http://antares.inegi.org.mx/analisis/red_hidro/SIATL/#.

  • Idriss, A. A., & Ahmad, A. K. (2013). Heavy metals nickel and chromiumin sediments in the Juru River, Penang, Malaysia. Journal of Environmental Protection, 4, 1245–1250.

    Article  CAS  Google Scholar 

  • INEGI (Instituto Nacional de Estadística Geografia e Informática). (1985). Cartas Hidrológicas de Aguas Superficiales: CANANEA H12-2 y H12-5, Escala 1:250,000. México: Primera Edición.

    Google Scholar 

  • AOAC International (1999). Official methods of analysis of AOAC International; method 980.02, sulfur in fertilizers. Gravimetric method, chapter 2. 16Th edition, volume 1. USA.

  • Jain, C. K., Malik, D. S., & Yadav, R. (2007). Metal fractionation study on bed sediments of Lake Naintal, Uttaranchal, India. Environmental Monitoring and Assessment, 130(1–3), 129–139.

    Article  CAS  Google Scholar 

  • Jain, C. K., Gupta, H., & Chakrapani, G. J. (2008). Enrichment and fractionation of heavy metals in bed sediments of River Narmada, India. Environmental Monitoring Assessment, 141, 35–47.

    Article  CAS  Google Scholar 

  • Khorasanipour, M., Tangestani, M. H., Reza, N., & Hajmohammadi, H. (2011). Hydrochemistry, mineralogy and chemical fractionation of mine and processing wastes associated with porphyry copper mines: a case study from the Sarcheshmeh mine, SE Iran. Applied Geochemistry, 26, 714–730.

    Article  CAS  Google Scholar 

  • Liu, Y., Bao, A., & Pan, X. (2014). Depth variability and fractionation of Fe, Mn, Cu and Pb in sediments from Bosten Lake in Xinjiang, Northwest China. Advanced Materials Research, 864–867, 1036–1041.

    Google Scholar 

  • Long, E. R., & Morgan, L. G. (1990). The potential for biological effects of sediment-sorbed contaminants tested in the National States and Trends Program. U.S.A: National Oceanic Atmospheric Administration (NOAA).

    Google Scholar 

  • Longjiang, M., Qiang, F., Duowen, M., Ke, H., & Jinghong, Y. (2011). Contamination assessment of heavy metal in surface sediments of the Wuding River, northern China. Journal of Radioanalytical and Nuclear Chemistry, 290, 409–414.

    Article  CAS  Google Scholar 

  • López, D. L., Gierlowski-Kordesch, E., & Hollenkamp, C. (2010). Geochemical mobility and bioavailability of heavy metals in a lake affected by acid mine drainage: Lake Hope, Vinton County, Ohio. Water Air, and Soil Pollution. doi:10.1007/s11270-010-0364-6.

    Google Scholar 

  • Lu, L., Wang, R., Chen, F., Xue, J., Zhang, P., & Lu, J. (2005). Element mobility during pyrite weathering: implications for acid and heavy metal pollution at mining-impacted sites. Environmental Geology, 49, 82–89.

    Article  CAS  Google Scholar 

  • Mayuri, C. H., & Nema, A. K. (2012). Assessment of heavy metal contamination in Hindon River sediments: a chemometric and geochemical approach. Chemosphere, 87, 945–953.

    Article  Google Scholar 

  • Meza-Montenegro, M. M., Gandolfi, J., Santana-Alcántar, M. A., Klimecki, W. T., Aguilar-Apodaca, M. G., Del Río-Salas, R., De la O-Villanueva, M., Gómez-Alvarez, A., Mendivil-Quijada, H., Valencia, M., & Meza-Figueroa, D. (2012). Metals in residential soils and cumulative risk assessment in Yaqui and Mayo agricultural valleys, northern Mexico. Science of the Total Environment, 433, 472–481.

    Article  CAS  Google Scholar 

  • Montalvo, C., Aguilar, C. A., Amador, L. E., Cerón, J. G., Ceron, R. M., Anguebes, F., & Cordova, A. V. (2014). Metal contents in sediments (Cd, Cu, Mg, Fe, Mn) as indicators of pollution of Palizada River, Mexico. Environmental and Pollution, 3(4), 89–98.

    Article  CAS  Google Scholar 

  • Mortatti, J., de Oliveira, H., Meneghel de Moraesa, G., Vendraminia, G., & Martins, F. A. (2015). Distribution of heavy metals in the geochemical phases of sediments from the Tietê River, Brazil. Chemical Speciation and Bioavailability, 25(3), 194–200.

    Article  Google Scholar 

  • Mudroch, A., & Azcue, J. M. (1995). Manual of aquatic sediment sampling. USA: Lewis Publishers.

    Google Scholar 

  • Müller, G. (1969). Index of geoaccumulation in sediments of the Rhine River. GeoJournal, 2, 108–118.

    Google Scholar 

  • Ogunfowokan, A. O., Oyekunle, J. A. O., Olutona, G. O., Atoyebi, A. O., & Lawal, A. (2013). Speciation study of heavy metals in water and sediments from Asunle River of the Obafemi Awolowo University, Ile-Ife, Nigeria. International Journal of Environmental Protection, 3(3), 6–16.

    Google Scholar 

  • Pagnanelli, F., Moscardini, E., Guiliano, V., & Toro, L. (2004). Sequential extraction of heavy metals in river sediments of an abandoned pyrite mining area: pollution detection and affinity series. Environmental Pollution, 132, 189–201.

    Article  CAS  Google Scholar 

  • Pérez-González, G. (2005). Disponibilidad de metales tóxicos en sitios contaminados. Aplicaciones y limitaciones de la fraccionacion en la determinación de gradientes de polución. Tesis de Doctorado. Universitad Autónoma de Barcelona, España.

  • Persaud, D., Jaagumagi, R., & A. Hayton (1993). Guidelines for the protection and management of aquatic sediment quality in Ontario. Toronto, Canadá.

  • Ramos, L., González, M. J., & Hernández, L. M. (1999). Sequential extraction of copper, lead, cadmium, and zinc in sediments from Ebro Riber (Spain): relationship with levels detected in earthworms. Bulletin of Environmental Contamination Toxicology, 62, 301–308.

    Article  CAS  Google Scholar 

  • Ramos-Gómez, M., Avelar, J., Medel-Reyes, A., Yamamoto, L., Godinez, L., Ramírez, M., Guerra, R., & Rodríguez, F. (2012). Movilidad de metales en jales procedentes del Distrito Minero de Guanajuato, México. Revista Internacional de Contaminación Ambiental, 28(1), 49–52.

    Google Scholar 

  • Reimann, C., & De Caritat, P. (2000). Intrinsic flaws of element enrichment (EFs) in environmental geochemistry. Environmental Science and Technology, 34, 5084–5091.

    Article  CAS  Google Scholar 

  • Ryan, P. C., Wall, A. J., Hillier, S., & Clark, L. (2002). Insights into sequential chemical extraction procedures from quantitative XRD: a study of trace metal partitioning in sediments related to frog malformities. Environmental Geology, 184, 337–357.

    CAS  Google Scholar 

  • S.G.M. (Servicio Geológico Mexicano) (2013). Resultados de Análisis Geoquímicos de la carta Cananea H12-B52. México.

  • Schropp, S.J. & Windom, H.L. (1988). A guide to the interpretation of metal concentrations in estuarine sediments. Florida Department of Environmental Regulation.

  • Singh, K. P., Mohan, D., Singh, V. K., & Malik, A. (2005). Studies on distribution and fractionation of heavy metals in Gomti river sediments—a tributary of the Ganges. Journal of Hidrology, 312, 14–27.

    Article  CAS  Google Scholar 

  • Smouni, A., Ater, M., Laplaze, L., El Mzibri, M., Berhada, F., Filali-Maltouf, A., & Doumas, P. (2010). Évaluation de la contamination par les éléments-traces métalliques dans une zone minière du Maroc oriental. Cahiers Agricultures, 19, 1–7.

    Google Scholar 

  • Szefer, P., Glasby, G. P., Szefer, K., Pempkowiak, J., & Kaliszan, R. (1996). Heavy metal pollution in superficial sediments from the southern Baltic Sea off Poland. Journal of Environmental Science and Health, 31A, 2723–2754.

    Google Scholar 

  • Tejeda, S., Zarazúa-Ortega, G., Ávila-Pérez, P., García-Mejía, A., Carapia-Morales, L., & Díaz-Delgado, C. (2006). Major and trace elements in sediments of the upper course of Lerma River. Journal of Radioanalytical and Nuclear Chemistry, 270(1), 9–14.

    Article  CAS  Google Scholar 

  • Tessier, A., Campbell, P. G. C., & Bisson, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 51(7), 844–851.

    Article  CAS  Google Scholar 

  • Vasyukova, E. V., Pokrovsky, O. S., Viers, J., Oliva, P., Dupré, B., Martin, F., & Candaudap, F. (2010). Trace elements in organic- and iron-rich surficial fluids of the boreal zone: assessing colloidal forms via dialysis and ultrafiltration. Geochimica et Cosmochimica Acta, 74(2), 449–468.

    Article  CAS  Google Scholar 

  • Vuković, Z., Radenković, M., Stanković, S. J., & Vuković, D. (2011). Distribution and accumulation of heavy metals in the water and sediments of the River Sava. Journal of the Serbian Chemical Society, 76(5), 795–803.

    Article  Google Scholar 

  • Wang, S., Cao, Z., Lan, D., Zheng, Z., & Li, G. (2008). Concentration distribution and assessment of several heavy metals in sediments of west-four Pearl River Estuary. Environmental Geology, 55, 963–975.

    Article  CAS  Google Scholar 

  • Wei, B., & Yang, L. (2010). A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China. Review article. Microchemical Journal, 94, 99–107.

    Article  CAS  Google Scholar 

  • Xiangdong, I., Zhenguo, S., Onyx, W. H. W., & Yok-Sheung, L. (2000). Chemical partitioning of heavy metal contaminants in sediments of the Pearl River Estuary. Chemical Speciation Bioavailability, 12(1), 17–25.

    Article  Google Scholar 

  • Xiangdong, I., Zhenguo, S., Onyx, W. H. W., & Yok-Sheung, L. (2001). Chemical forms of Pb, Zn and Cu in the sediments profiles of the Pearl River Estuary. Marine Pollution Bulletin, 42(3), 215–223.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the Departments of Chemical Engineering and Metallurgy and the Direction of Research and Graduate Studies of the University of Sonora for their support in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agustín Gómez-Álvarez.

Additional information

Highlights

• High levels of bioavailable metals in sediments near acid spill affected area are reported.

• A significant environmental risk near major water supply in northern Mexico is identified.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aguilar-Hinojosa, Y., Meza-Figueroa, D., Villalba-Atondo, A.I. et al. Mobility and Bioavailability of Metals in Stream Sediments Impacted by Mining Activities: the Jaralito and the Mexicana in Sonora, Mexico. Water Air Soil Pollut 227, 345 (2016). https://doi.org/10.1007/s11270-016-3046-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-016-3046-1

Keywords

Navigation