Skip to main content
Log in

Photocatalysis of a Commercial Naphthenic Acid in Water Using Fixed-Film TiO2

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Photolysis or photocatalysis may provide a process for mitigating ecological risks of naphthenic acids (NAs) contained in energy-derived waters such as refinery effluents and process waters. If effective, fixed-film TiO2 photocatalysis of NAs could decrease operational expenses as well as capital costs for water treatment. The overall objective of this study was to measure rates and extents of photolysis and photocatalytic degradation of commercial NAs using bench-scale fixed-film TiO2 and confirm changes in NA concentrations using sensitive vertebrate (fish = Pimephales promelas) and invertebrate (Daphnia magna) species. Specific objectives were to (1) measure rates and extents of degradation of commercial (Fluka) NAs throughout an 8-h duration of natural sunlight (“photolysis”) and natural sunlight in the presence of fixed-film TiO2 (“photocatalysis”) and (2) measure changes in toxicity in terms of mortality with sentinel fish and microinvertebrate species. Bench-scale chambers using thin-film TiO2 irradiated with natural sunlight were used to measure photocatalysis, and HPLC was used to quantify NAs. After 4 h in photocatalysis treatments, >92 % decline was observed with an average removal rate of 15.5 mg/L/h and half-life of 2 h. After 5 h of photocatalysis, there was no measurable NA toxicity for fish (P. promelas) or microinvertebrates (D. magna). Photocatalytic degradation achieved efficacious rates and extents of removal of Fluka NAs and eliminated acute toxicity to sentinel aquatic organisms, indicating the potential for application of this technology for mitigating ecological risks. Coupled with existing treatment processes (i.e., aerobic biodegradation), photocatalysis can augment rates and extents of NA removal from impacted waters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Allen, E. W. (2008). Process water treatment in Canada’s oil sands industry: I. Target pollutants and treatment objectives. Journal of Environmental Engineering Science, 7, 123–138.

    Article  CAS  Google Scholar 

  • Alpert, S. M., Knappe, D. R., & Ducoste, J. J. (2010). Modeling the UV/hydrogen peroxide advanced oxidation process using computational fluid dynamics. Water Research, 44, 1797–1808.

  • American Petroleum Institute (API). (2012). Naphthenic acids category analysis and hazard characterization. Petroleum HPV Testing Group Technical Report # 1100997.

  • American Public Health Association (APHA). (2012). Standard methods for the examination of water and wastewater (21st ed., p. 1368). Baltimore: American Public Health Association, Port City Press.

    Google Scholar 

  • Armstrong, S. A., Headley, J. V., Peru, K. M., & Germida, J. J. (2008). Phytotoxicity of oil sands naphthenic acids and dissipation from systems planted with emergent aquatic macrophytes. Journal of Environmental Science and Health. Part A, Toxic/Hazardous Substances & Environmental Engineering, 43, 36–42.

    Article  CAS  Google Scholar 

  • Bagheri, S., Muhd Julkapli, N., & Bee Abd Hamid, S. (2014). Titanium dioxide as a catalyst support in heterogeneous catalysis. The Scientific World Journal.

  • Barrow, M. P., Headley, J. V., Peru, K. M., & Derrick, P. J. (2004). Fourier transform ion cyclotron resonance mass spectrometry of principal components in oil sands naphthenic acids. Journal of Chromatography A, 1058, 51–59.

    Article  CAS  Google Scholar 

  • Brient, J. A., Wessner, P. J., Doyle, M. N. (1995). Naphthenic acids. Kirk-Othmer encyclopedia of chemical technology, 4th ed., 1017–1029.

  • Clemente, J. S., & Fedorak, P. M. (2005). A review of the occurrence, analyses, toxicity, and biodegradation of naphthenic acids. Chemosphere, 60, 585–600.

    Article  CAS  Google Scholar 

  • Dorn, P. B. (1992). Case histories—the petroleum industry. Toxicity reduction: evaluation and control. In D. L. Ford (Ed.), Water Quality Management Library (Vol. 3, pp. 183–223).

    Google Scholar 

  • Frank, R. A., Fischer, K., Kavanagh, R., Burnison, B. K., Arsenault, G., Headley, J. V., Peru, K. M., Van Der Kraak, G., & Solomon, K. R. (2008). Effect of carboxylic acid content on the acute toxicity of oil sands naphthenic acids. Environmental Science & Technology, 43, 266–271.

    Article  Google Scholar 

  • Han, X., MacKinnon, M. D., & Martin, J. W. (2009). Estimating the in situ biodegradation of naphthenic acids in oil sands process waters. Chemosphere, 76, 63–70.

    Article  CAS  Google Scholar 

  • Headley, J. V., & McMartin, D. W. (2004). A review of the occurrence and fate of naphthenic acids in aquatic environments. Journal of Environmental Science and Health, Part A : Toxic/Hazardous Substances & Environmental Engineering, 39, 1989–2010.

    Article  Google Scholar 

  • Headley, J., Du, J., Peru, K., & McMartin, D. (2009). Electrospray ionization mass spectrometry of the photodegradation of naphthenic acids mixtures irradiated with titanium dioxide. Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances & Environmental Engineering, 44, 591–597.

    Article  CAS  Google Scholar 

  • Headley, J. V., Peru, K. M., Adenugba, A. A., Du, J. L., & Mcmartin, D. W. (2010). Dissipation of naphthenic acids mixtures by lake biofilms. Journal of Environmental Science and Health, Part A, 45, 1027–1036.

    Article  CAS  Google Scholar 

  • Holowenko, F. M., MacKinnon, M. D., & Fedorak, P. M. (2002). Characterization of naphthenic acids in oil sands wastewaters by gas chromatography–mass spectrometry. Water Research, 36, 2843–2855.

    Article  CAS  Google Scholar 

  • Kavanagh, R. J., Frank, R. A., Burnison, B. K., Young, R. F., Fedorak, P. M., Solomon, K. R., & Van Der Kraak, G. (2012). Fathead minnow (Pimephales promelas) reproduction is impaired when exposed to a naphthenic acid extract. Aquatic Toxicology, 116, 34–42.

    Article  Google Scholar 

  • Kinley, C. M., McQueen, A. D., & Rodgers, J. H., Jr. (2016). Comparative responses of freshwater organisms to exposures of a commercial naphthenic acid. Chemosphere, 153, 170–178.

    Article  CAS  Google Scholar 

  • Kinsinger, N., Honda, R., Keene, V., & Walker, S. L. (2015). Titanium dioxide nanoparticle removal in primary prefiltration stages of water treatment: role of coating, natural organic matter, source water, and solution chemistry. Environmental Engineering Science, 32, 1–9.

    Article  Google Scholar 

  • Kirk, J. T. (1994). Light and photosynthesis in aquatic ecosystems. Cambridge: Cambridge university press.

  • Leclair, L. A., MacDonald, G. Z., Phalen, L. J., Köllner, B., Hogan, N. S., & van den Heuvel, M. R. (2013). The immunological effects of oil sands surface waters and naphthenic acids on rainbow trout (Oncorhynchus mykiss). Aquatic Toxicology, 142, 185–194.

    Article  Google Scholar 

  • Lo, C. C., Brownlee, B. G., & Bunce, N. J. (2006). Mass spectrometric and toxicological assays of Athabasca oil sands naphthenic acids. Water Research, 40, 655–664.

    Article  CAS  Google Scholar 

  • McMartin, D. W., Headley, J. V., Friesen, D. A., Peru, K. M., & Gillies, J. A. (2004). Photolysis of naphthenic acids in natural surface water. Journal of Environmental Science and Health, Part A, 39, 1361–1383.

    Article  Google Scholar 

  • Metcalf & Eddy, Tchobanoglous, G., Burton, F. L., & Stensel, H. D. (2004). Wastewater engineering: treatment and reuse (4th ed.). Boston: McGraw-Hill.

  • Mishra, S., Meda, V., Dalai, A., McMartin, D. W., Headley, J. V., & Peru, K. M. (2010). Photocatalysis of naphthenic acids in water. Journal of Water Resource and Protection, 2, 644–650.

    Article  CAS  Google Scholar 

  • Nero, V., Farwell, A., Lee, L. E. J., Van Meer, T., MacKinnon, M. D., & Dixon, D. G. (2006). The effects of salinity on naphthenic acid toxicity to yellow perch: gill and liver histopathology. Ecotoxicology and Environmental Safety, 65, 252–264.

    Article  CAS  Google Scholar 

  • Organization for Economic Cooperation and Development (OECD). (2000). Guidance document on aquatic toxicity testing of difficult substances and mixtures (OECD Series on Testing and Assessment No. 23, ENV/JM/MONO (2000), Vol. 6). Paris: OECD.

    Google Scholar 

  • Parsons, S. (Ed.). (2004). Advanced oxidation processes for water and wastewater treatment. London: IWA Publishing.

    Google Scholar 

  • Rudzinski, W. E., Oehlers, L., Zhang, Y., & Najera, B. (2002). Tandem mass spectrometric characterization of commercial naphthenic acids and a Maya crude oil. Energy & Fuels, 16, 1178–1185.

    Article  CAS  Google Scholar 

  • Schramm, L. L. (Ed.). (2000). Surfactants: fundamentals and applications in the petroleum industry. Cambridge: Cambridge University Press.

    Google Scholar 

  • Scott, A. C., Mackinnon, M. D., & Fedorak, P. M. (2005). Naphthenic acids in Athabasca oil sands tailings waters are less biodegradable than commercial naphthenic acids. Environmental Science and Technology, 39, 8388–8394.

    Article  CAS  Google Scholar 

  • Seifert, W. K., & Teeter, R. M. (1969). Preparative thin-layer chromatography and high-resolution mass spectrometry of crude oil carboxylic acids. Analytical Chemistry, 41, 786–795.

    Article  CAS  Google Scholar 

  • Sigma-Aldrich, (2015). MSDS, Naphthenic acid. St. Louis, Missouri.

  • Swigert, J. P., Lee, C., Wong, D. C., White, R., Scarlett, A. G., West, C. E., & Rowland, S. J. (2015). Aquatic hazard assessment of a commercial sample of naphthenic acids. Chemosphere, 124, 1–9.

    Article  CAS  Google Scholar 

  • Tomczyk, N. A., Winans, R. E., Shinn, J. H., & Robinson, R. C. (2001). On the nature and origin of acidic species in petroleum. 1. Detailed acid type distribution in a California crude oil. Energy & Fuels, 15, 1498–1504.

    Article  CAS  Google Scholar 

  • United States Environmental Protection Agency (USEPA). (2002). Methods for measuring acute toxicity of effluents and receiving waters to freshwater and marine organisms. Washington DC. EPA-821-R-02-12.

  • United States Environmental Protection Agency (USEPA). (2012). Screening-level hazard characterization: reclaimed substances (Naphthenic acids category). Washington DC. EPA-821-R-02-12.

  • Wold, A. (1993). Photocatalytic properties of Ti02. Chemistry of Materials, 5, 280–283.

    Article  CAS  Google Scholar 

  • Yen, T. W., Marsh, W. P., MacKinnon, M. D., & Fedorak, P. M. (2004). Measuring naphthenic acids concentrations in aqueous environmental samples by liquid chromatography. Journal of Chromatography, 1033, 83–90.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Funding support for this research was provided by Shell Canada Ltd. and Suncor Energy. The authors are also grateful to Dr. Wayne Chao of Clemson University for providing analytical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew D. McQueen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McQueen, A.D., Kinley, C.M., Kiekhaefer, R.L. et al. Photocatalysis of a Commercial Naphthenic Acid in Water Using Fixed-Film TiO2 . Water Air Soil Pollut 227, 132 (2016). https://doi.org/10.1007/s11270-016-2835-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-016-2835-x

Keywords

Navigation