Skip to main content

Advertisement

Log in

Antioxidant Defense Response and Growth Reaction of Amorpha fruticosa Seedlings in Petroleum-Contaminated Soil

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The petroleum production has been raised sharply over the past decades, whereas the petroleum exploitation has also caused serious environmental contamination. A pot experiment has been conducted to monitor the dynamic response of antioxidant defense system and the growth reaction of Amorpha fruticosa seedlings to soil petroleum contamination. The results show that (1) in 5 g kg−1 contaminated soil, A. fruticosa removes reactive oxygen species (ROS) by increasing the activities of antioxidant enzymes (glutathione reductase (GR), superoxide dismutase (SOD), catalase (CAT)), while in 10–15 g kg−1 long-term contaminated soil, A. fruticosa removes ROS by the cooperation of antioxidant enzymes and antioxidants (SOD, CAT, ascorbate peroxidase (APX), GR, ascorbic acid (AsA), glutathione (GSH), and proline (Pro)). In long-term 20 g kg−1 contaminated soil, the defense ability of APX and AsA decreases sharply, and A. fruticosa removes the ROS by the synergistic effect of antioxidant enzymes (SOD and CAT) and antioxidants (GSH and Pro). Only in 20 g kg−1 long-term petroleum contamination caused significant (P < 0.05) increase in H2O2 content in seedlings. (2) SOD, CAT, GR, GSH, and Pro exhibit increases in long-term severely contaminated soil, and these enzymes and antioxidants are the most important defender of A. fruticosa to ROS accumulation caused by petroleum contamination. (3) The growth of A. fruticosa seedlings is less affected in 5 g kg−1 petroleum-contaminated soil, while it significantly decreases in 10, 15, and 20 g kg−1 petroleum-contaminated soils (P < 0.05). (4) Considering comprehensively the response of antioxidant defense system and the growth reaction of seedlings to petroleum contamination, A. fruticosa could be utilized for phytoremediation in ≤15 g kg−1 contaminated soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Achuba, F. I. (2014). Petroleum products in soil mediated oxidative stress in cowpea (Vigna unguiculata) and maize (Zea mays) seedlings. Open Journal of Soil Science, 4(12), 417.

    Article  Google Scholar 

  • Alkorta, I., & Garbisu, C. (2001). Phytoremediation of organic contaminants in soils. Bioresource Technology, 79(3), 273–276. doi:10.1016/S0960-8524(01)00016-5.

    Article  CAS  Google Scholar 

  • Andrade, M. L., Covelo, E. F., Vega, F. A., & Marcet, P. (2004). Effect of the Prestige oil spill on salt marsh soils on the Coast of Galicia (Northwestern Spain). Journal of Environmental Quality, 33(6), 2103–2110.

    Article  CAS  Google Scholar 

  • Asada, K. (1999). The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annual Review of Plant Biology, 50(1), 601–639.

    Article  CAS  Google Scholar 

  • Bento, R. A., Saggin-Júnior, O. J., Pitard, R. M., Straliotto, R., da Silva, E. M. R., Tavares, S. R. D. L., et al. (2012). Selection of leguminous trees associated with symbiont microorganisms for phytoremediation of petroleum-contaminated soil. Water, Air, & Soil Pollution, 223(9), 5659–5671. doi:10.1007/s11270-012-1305-3.

    Article  CAS  Google Scholar 

  • Beyer, W. F., & Fridovich, I. (1987). Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. Analytical Biochemistry, 161(2), 559–566.

    Article  CAS  Google Scholar 

  • Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1), 248–254.

    Article  CAS  Google Scholar 

  • Bramley-Alves, J., Wasley, J., King, C. K., Powell, S., & Robinson, S. A. (2014). Phytoremediation of hydrocarbon contaminants in subantarctic soils: an effective management option. Journal of Environment Management, 142, 60–69. doi:10.1016/j.jenvman.2014.04.019.

    Article  CAS  Google Scholar 

  • Brandt, R., Merkl, N., Schultze-Kraft, R., Infante, C., & Broll, G. (2006). Potential of vetiver (Vetiveria zizanioides (L.) Nash) for phytoremediation of petroleum hydrocarbon-contaminated soils in Venezuela. International Journal of Phytoremediation, 8(4), 273–284. doi:10.1080/15226510600992808.

    Article  CAS  Google Scholar 

  • Corseuil, H. X., & Moreno, F. N. (2001). Phytoremediation potential of willow trees for aquifers contaminated with ethanol-blended gasoline. Water Research, 35(12), 3013–3017.

    Article  CAS  Google Scholar 

  • del C Rivera-Cruz, M., Trujillo-Narcía, A., Ferrera-Cerrato, R., Rodríguez-Vázquez, R., Volke-Haller, V., Sánchez-García, P., et al. (2006). Fitorremediación de suelos con Benzo (a) Pireno mediante microorganismos autóctonos y pasto alemán [Echinochloa polystachya (HBK) Hitchc.]. Universidad y Ciencia, 22(1), 1–12.

    Google Scholar 

  • Ding, H., Zhu, W., Yang, S., & Yang, X. (2005). Dynamic changes in antioxidative systems in roots of tomato (Lycopersicom esculentum Mill.) seeding under zinc stress and recovery. Chinese Journal of Applied & Environmental Biology, 11(5), 531–535.

    CAS  Google Scholar 

  • Ellman, G. L. (1959). Tissue sulfhydryl groups. Archives of Biochemistry and Biophysics, 82(1), 70–77.

    Article  CAS  Google Scholar 

  • Euliss, K., Ho, C. H., Schwab, A. P., Rock, S., & Banks, A. K. (2008). Greenhouse and field assessment of phytoremediation for petroleum contaminants in a riparian zone. Bioresource Technology, 99(6), 1961–1971. doi:10.1016/j.biortech.2007.03.055.

    Article  CAS  Google Scholar 

  • Gong, X., Rong, L., Yang, L., Liu, Z., & Fang, Y. (2011). Effect and eco-toxicity of maize growth in petroleum contaminated soil. Environmental Science and Technology, 34(10), 71–75.

    CAS  Google Scholar 

  • Han, G., Dang, Q., & Zhao, Z. (2008). Response of antioxidation protection system of Hedysarum scoparium to drought stress. Acta Botanica Boreali-Occidentalia Sinica, 28(5), 1007–1013.

    CAS  Google Scholar 

  • Hernandez-Ortega, H. A., Alarcon, A., Ferrera-Cerrato, R., Zavaleta-Mancera, H. A., Lopez-Delgado, H. A., & Mendoza-Lopez, M. R. (2012). Arbuscular mycorrhizal fungi on growth, nutrient status, and total antioxidant activity of Melilotus albus during phytoremediation of a diesel-contaminated substrate. Journal of Environment Management, 95(Suppl), S319–324. doi:10.1016/j.jenvman.2011.02.015.

    Article  CAS  Google Scholar 

  • Karamalidis, A., Evangelou, A., Karabika, E., Koukkou, A., Drainas, C., & Voudrias, E. (2010). Laboratory scale bioremediation of petroleum-contaminated soil by indigenous microorganisms and added Pseudomonasaeruginosa strain Spet. Bioresource Technology, 101(16), 6545–6552.

    Article  CAS  Google Scholar 

  • Kechavarzi, C., Pettersson, K., Leeds-Harrison, P., Ritchie, L., & Ledin, S. (2007). Root establishment of Perennial ryegrass (L. perenne) in diesel contaminated subsurface soil layers. Environmental Pollution, 145(1), 68–74.

    Article  CAS  Google Scholar 

  • Kirk, J. L., Klirnomos, J. N., Lee, H., & Trevors, J. T. (2002). Phytotoxicity assay to assess plant species for phytoremediation of petroleum-contaminated soil. Bioremediation Journal, 6(1), 57–63.

    Article  CAS  Google Scholar 

  • Kirk, J. L., Klironomos, J. N., Lee, H., & Trevors, J. T. (2005). The effects of perennial ryegrass and alfalfa on microbial abundance and diversity in petroleum contaminated soil. Environmental Pollution, 133(3), 455–465. doi:10.1016/j.envpol.2004.06.002.

    Article  CAS  Google Scholar 

  • Li, F., Yao, J., & Wang, Q. (2006). Screening of plants for phytoremediation of petroleum-contaminated soils. Chinese Agricultural Science Bulletin, 22(9), 429–431.

    CAS  Google Scholar 

  • Lin, Q., Mendelssohn, I. A., Suidan, M. T., Lee, K., & Venosa, A. D. (2002). The dose-response relationship between No. 2 fuel oil and the growth of the salt marsh grass. Spartina alterniflora. Marine Pollution Bulletin, 44(9), 897–902.

    Article  CAS  Google Scholar 

  • Liu, R., Xiao, N., Wei, S. H., Zhao, L. X., & An, J. (2014). Rhizosphere effects of PAH-contaminated soil phytoremediation using a special plant named Fire Phoenix. Science of the Total Environment, 473, 350–358. doi:10.1016/j.scitotenv.2013.12.027.

    Article  Google Scholar 

  • Moreira, I. T. A., Oliveira, O. M. C., Triguis, J. A., dos Santos, A. M. P., Queiroz, A. F. S., Martins, C. M. S., et al. (2011). Phytoremediation using Rizophora mangle L. in mangrove sediments contaminated by persistent total petroleum hydrocarbons (TPH’s). Microchemical Journal, 99(2), 376–382. doi:10.1016/j.microc.2011.06.011.

    Article  CAS  Google Scholar 

  • Moubasher, H. A., Hegazy, A. K., Mohamed, N. H., Moustafa, Y. M., Kabiel, H. F., & Hamad, A. A. (2015). Phytoremediation of soils polluted with crude petroleum oil using Bassia scoparia and its associated rhizosphere microorganisms. International Biodeterioration & Biodegradation, 98, 113–120. doi:10.1016/j.ibiod.2014.11.019.

    Article  CAS  Google Scholar 

  • Mukherjes, S., & Choudhuri, M. (1983). Implication of water stress induced change in the lever of endogenous ascorbic acid under hydrogen peroxide in vigna seedings. Physiology. Plant, 58(2), 166–170.

    Article  Google Scholar 

  • Ogboghodo, I., Iruaga, E., Osemwota, I., & Chokor, J. (2004). An assessment of the effects of crude oil pollution on soil properties, germination and growth of maize (Zea mays) using two crude types–Forcados light and Escravos light. Environmental Monitoring and Assessment, 96(1-3), 143–152.

    Article  CAS  Google Scholar 

  • Peng, S., Zhou, Q., Cai, Z., & Zhang, Z. (2009). Phytoremediation of petroleum contaminated soils by Mirabilis Jalapa L. in a greenhouse plot experiment. Journal of Hazardous Materials, 168(2-3), 1490–1496. doi:10.1016/j.jhazmat.2009.03.036.

    Article  CAS  Google Scholar 

  • Rahn, J. H. (2012). A test method for the evaluation of soil microbial health in a petroleum hydrocarbon contaminated boreal forest soil. Dissertation, The University of Guelph.

  • Ramos, D. T., Maranho, L. T., Godoi, A. F. L., da Silva Carvalho Filho, M. A., Lacerda, L. G., & de Vasconcelos, E. C. (2009). Petroleum hydrocarbons rhizodegradation by Sebastiania commersoniana (BAILL.) LB SM. & Downs. Water, Air, & Soil Pollution: Focus, 9(3-4), 293–302.

    Article  Google Scholar 

  • Ribeiro, H., Mucha, A. P., Almeida, C. M., & Bordalo, A. A. (2013). Bacterial community response to petroleum contamination and nutrient addition in sediments from a temperate salt marsh. Science of the Total Environment, 458–460, 568–576. doi:10.1016/j.scitotenv.2013.04.015.

    Article  Google Scholar 

  • Rong, L. (2010). Study on the effects of eco-toxicity of petroleum-contaminated soil on plants growth. Dissertation, Nanchang University.

  • Saruyama, H., & Tanida, M. (1995). Effect of chilling on activated oxygen-scavenging enzymes in low temperature-sensitive and-tolerant cultivars of rice (Oryza sativa L.). Plant Science, 109(2), 105–113.

    Article  CAS  Google Scholar 

  • Shukry, W., Al-Hawas, G., Al-Moaikal, R., & El-Bendary, M. (2013). Effect of petroleum crude oil on mineral nutrient elements, soil properties and bacterial biomass of the rhizosphere of jojoba. British Journal of Environment and Climate Change, 3(1), 103–118.

    Article  CAS  Google Scholar 

  • Soleimani, M., Afyuni, M., Hajabbasi, M. A., Nourbakhsh, F., Sabzalian, M. R., & Christensen, J. H. (2010). Phytoremediation of an aged petroleum contaminated soil using endophyte infected and non-infected grasses. Chemosphere, 81(9), 1084–1090. doi:10.1016/j.chemosphere.2010.09.034.

    Article  CAS  Google Scholar 

  • Spriggs, T., Banks, M. K., & Schwab, P. (2005). Phytoremediation of polycyclic aromatic hydrocarbons in manufactured gas plant–impacted soil. Journal of Environmental Quality, 34(5), 1755–1762.

    Article  CAS  Google Scholar 

  • Tanaka, K., Suda, Y., Kondo, N., & Nakano, Y. (1985). Ozone tolerance and the ascorbate-dependent hydrogen peroxide decomposing system in chloroplasts. Plant & Cell Physiology, 26(1425), 3.

    Google Scholar 

  • Tang, J., Wang, M., Wang, F., Sun, Q., & Zhou, Q. (2011). Eco-toxicity of petroleum hydrocarbon contaminated soil. Journal of Environmental Sciences, 23(5), 845–851.

    Article  CAS  Google Scholar 

  • Tanida, M. (1996). Catalase activity of rice seed embryo and its relation to germination rate at a low temperature. Breeding Science, 46(1), 23–27.

    CAS  Google Scholar 

  • Thavamani, P., Malik, S., Beer, M., Megharaj, M., & Naidu, R. (2012). Microbial activity and diversity in long-term mixed contaminated soils with respect to polyaromatic hydrocarbons and heavy metals. Journal of Environmental Management, 99, 10–17.

    Article  CAS  Google Scholar 

  • Wang, X., Feng, J., & Zhao, J. (2010). Effects of crude oil residuals on soil chemical properties in oil sites, Momoge Wetland, China. Environmental Monitoring and Assessment, 161(1-4), 271–280.

    Article  CAS  Google Scholar 

  • Wang, R., Wang, M., Niu, X., & Tang, C. (2015). Determination of total petroleum hydrocarbons content in soil by ultrasonic-soxhlet extraction-gravimetric analysis. Chinese Journal of Analytical Chemistry, 38(3), 417–420.

    Google Scholar 

  • Xun, F., Xie, B., Liu, S., & Guo, C. (2015). Effect of plant growth-promoting bacteria (PGPR) and arbuscular mycorrhizal fungi (AMF) inoculation on oats in saline-alkali soil contaminated by petroleum to enhance phytoremediation. Environmental Science and Pollution Research, 22(1), 598–608.

    Article  CAS  Google Scholar 

  • Yang, C. (1987). Analysis technology for the petroleum contaminants in environment. Beijing: China Environmental Science Press.

    Google Scholar 

  • Zhang, X. S., Kang, Y. J., & Xu, D. J. (2012). Physiological response of Lolium perenne to petroleum pollution and removal efficiency in petroleum-polluted soil. Advanced Materials Research, 518, 2665–2669. Trans Tech Publ.

    Article  Google Scholar 

Download references

Acknowledgments

The present research project is supported by “the Fundamental Research Funds for Northwest A&F University (QN2011162)” and “the National Forestry Industry Research Special Funds for Public Welfare Projects (201104002-4).”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Han.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, B., Zhang, X., Han, G. et al. Antioxidant Defense Response and Growth Reaction of Amorpha fruticosa Seedlings in Petroleum-Contaminated Soil. Water Air Soil Pollut 227, 121 (2016). https://doi.org/10.1007/s11270-016-2821-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-016-2821-3

Keywords

Navigation