Skip to main content
Log in

Remediation of Polluted with Chromium Waters and Soils Cultivated with Wheat (Triticum durum) Using Zeolites Modified with Iron Oxide

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The present study examines the efficiency of soil amendments regarding the retention of chromate ions, from water and cultivated soil with wheat (Triticum durum). The minerals and iron oxides that have been used were zeolite, bentonite, goethite, and zeolite modified with goethite I and II. Each adsorbent was added to different Cr solutions, either Cr(NO3)3·9H2O or CrO3 in a proportion of 1/100 g adsorbent mL−1 solution. Moreover, greenhouse experiments were also conducted using the above materials as soil amendments. Two doses of chromate ions, i.e., 50 mg Cr(III) L−1 in the form of Cr(NO3)3·9H2O and 1 mg Cr(VI) L−1 in the form of CrO3, were added to plant pots cultivated with wheat. According to the results, the uptake of chromate ions from aqueous solutions onto different adsorbents has shown that modified zeolites (Z-G I and II) adsorb the highest amount of chromate ions, compared to all the other adsorbents. The statistical analysis of the greenhouse experimental data has shown that the increase of the dry weight in soils with amendments follows the order: Z-G II > G > Z-G I > B > Z for pots where Cr(NO3)3·9H2O solutions were added and Z-G II > G > Z > Z-G I > B for pots where CrO3 solutions were added, respectively. Moreover, all the used soil amendments reduced the total Cr concentration in plants, especially Z-G II. Consequently, such modified zeolites can be used for the remediation of polluted soils with chromium and the production of high-quality food products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abu-Saied, M. A., Abdel-Kalim, E. S., Fouda, M. M. G., & Al-Deyab, S. S. (2013). Preparation and characterization of iminated polyacrylonitrile for the removal of methylene blue from aqueous solutions. International Journal of Electrochemical Science, 8, 5121–5135.

    CAS  Google Scholar 

  • Adriano, D. C. (2001). Trace elements in terrestrial environments: biogeochemistry, bioavailability and risks of metals (2nd ed.). New York: Springer.

    Book  Google Scholar 

  • Barros, M. A. S. D., Silva, E. A., Arroyo, P. A., Tavares, C. R. G., Schneider, R. M., Suszek, M., & Sousa-Aguiar, E. F. (2004). Removal of Cr(III) in the fixed bed column and batch reactors using as adsorbent zeolite NaX. Chemical Engineering Science, 59, 5959–5966.

    Article  CAS  Google Scholar 

  • Barrow, N. J., & Whelan, B. R. (1998). Comparing the effects of pH on the sorption of metals by soil and by goethite and on the uptake by plants. European Journal of Soil Science, 49, 683–692.

    Article  Google Scholar 

  • Breck, D. W. (1974). Zeolite molecular sieves. Malabar, FL, USA: Robert E. Krieger Publishing Company.

    Google Scholar 

  • Chakir, A., Bessiere, J., Kacem, K., & Marouf, B. (2002). A comparative study of the removal of trivalent chromium from aqueous solutions by bentonite and expanded perlite. Journal of Hazardous Materials, B95, 29–46.

    Article  Google Scholar 

  • Chojnacka, K. (2010). Biosorption and bioaccumulation—the prospects for practical applications. Environment International, 36, 299–307.

    Article  CAS  Google Scholar 

  • Choppala, G., Bolan, N., Mallavarapu, M., Chen, Z., Sorption and mobility of chromium species in a range of soil types, 19th World Congress of Soil Science, Soil Solutions for a Changing World, 1–6 August 2010 Brisbane Australia.

  • Collins, C. R., Ragnarsdottir, K. V., & Sherman, D. M. (1999). Effect of inorganic and organic ligands on the mechanism of cadmium sorption to goethite. Geochimica et Cosmochimica Acta, 63, 2989–3002.

    Article  CAS  Google Scholar 

  • Cornell, R. M., & Schwertmann, U. (1996). The iron oxides, structure, properties, reactions, occurrence and uses. Weinheim VCH, 240–245(248), 254–260.

    Google Scholar 

  • Demirbaş, A. (2005). Adsorption of Cr(III) and Cr(VI) ions from aqueous solutions onto modified lignin. Energy Sources, 27, 1449–1455.

    Article  Google Scholar 

  • Ebrahimian, A., & Saberikhah, E. (2013). Biosorption of methylene blue onto Foumanat tea waste: equilibrium and thermodynamic studies. Cellulose Chem Technol, 47(7–8), 657–666.

    CAS  Google Scholar 

  • Elmorsi, T. M. (2011). Equilibrium isotherms and kinetic studies of removal of methylene blue dye by adsorption onto Miswak leaves as a natural adsorbent. Journal of Environmental Protection, 2, 817–827.

    Article  CAS  Google Scholar 

  • Gardea-Torresdey, J. L., Peralta-Videa, J. R., Montes, M., De la Rosa, G., & Corral-Diaz, B. (2004). Bioaccumulation of cadmium, chromium and copper by Convolvulus arvensis L.: impact on plant growth and uptake of nutritional elements. Bioresource Technology, 92, 229–235.

    Article  CAS  Google Scholar 

  • Gheju, M., Balcu, I., & Ciopec, M. (2009). Analysis of hexavalent chromium uptake by plants in polluted soils. Ovidius University Annals of Chemistry, 20, 127–131.

    CAS  Google Scholar 

  • Gregg, S. J., & Sing, K. S. W. (1982). Adsorption, surface area and porosity (2nd ed.). London: Academic.

    Google Scholar 

  • Ioannou, Z., Dimirkou, A., Golia, E., & Ioannou, A. (2009). Sorption of zinc by clinoptilolite-Fe(NO3)3 systems. Communications in Soil Science and Plant Analysis, 40, 240–258.

    Article  CAS  Google Scholar 

  • Ioannou, Z., Papapostolou, T., Georgoulas, N., & Dimirkou, A. (2012). Use of modified zeolites for the remediation of waters and cultivated soils from Cu(II). Water, Air, and Soil Pollution, 223, 5841–5854.

    Article  CAS  Google Scholar 

  • Jiang, J., Xu, R., Wang, Y., & Zhao, A. (2008). The mechanism of chromate sorption by three variable charge soils. Chemosphere, 71, 1469–1475.

    Article  CAS  Google Scholar 

  • Jones, J., Case, J.B., Case, V.W. (1990). Sampling, handling and analyzing plant tissue samples. In Soil Testing and Plant Analysis (pp. 389–427), 3rd ed., Madison, SSA.

  • Kabata-Pendias, A. (2004). Soil-plant transfer of trace element: an environmental issue. Geoderma, 122, 143–149.

    Article  CAS  Google Scholar 

  • Kesraoui-Ouki, S., Cheeseman, C. R., & Perry, R. (1994). Natural zeolite utilization in pollution control: a review of applications to metals’ effluents. Journal of Chemical Technology and Biotechnology, 59, 121–126.

    Article  CAS  Google Scholar 

  • López-Luna, J., González-Chávez, M. C., Esparza-García, F. J., & Rodríguez-Vázquez, R. (2009). Toxicity assessment of soil amended with tannery sludge, trivalent chromium and hexavalent chromium, using wheat and oat and sorghum plants. Journal of Hazardous Materials, 163, 829–834.

    Article  Google Scholar 

  • Mandiwana, K. L., Panicher, N., Kataeva, M., & Siebert, S. (2007). The solubility of Cr(III) and Cr(VI) compounds in soil and their availability to plants. Journal of Hazardous Materials, 147, 540–545.

    Article  CAS  Google Scholar 

  • Martínez-Trujillo, M., & Carreón-Abud, Y. (2015). Effect of mineral nutrients on the uptake of Cr(VI) by maize plants. New Biotechnology, 32(3), 396–402.

    Article  Google Scholar 

  • Mearns, A.J. (1974). Toxicity studies on chromium, Annual Report, Southern California Coastal Water Research Project

  • Mishra, S., Singh, V., Srivastava, S., Srivastava, R., Srivastava, M. M., Dass, S., Satsangi, G. P., & Prakash, S. (1995). Studies on uptake of trivalent and hexavalent chromium by maize (Zea mays). Food and Chemical Toxicology, 33, 393–398.

    Article  CAS  Google Scholar 

  • Molla, A., Dimirkou, A., & Antoniadis, V. (2012). Hexavalent chromium dynamics and uptake in manure-added soil. Water, Air, & Soil Pollution, 223, 6059–6067.

    Article  CAS  Google Scholar 

  • Molla, A., Ioannou, Z., Dimirkou, A., & Skordas, K. (2014). Surfactant modified zeolites with iron oxide for the removal of ammonium and nitrate ions from waters and soils. Topics in Chemistry and Material Science, 7, 38–49.

    Google Scholar 

  • Opporto, C., Arce, O., Van der Broeck, E., Van der Bruggen, B., & Vandecasteele, C. (2008). Experimental study and modelling of Cr(VI) removal from wastewater using Lemna minor. Water Research, 40, 1458–1464.

    Article  Google Scholar 

  • Ponce, S.-C., Prado, C., Pagano, E., Prado, F. E., & Rosa, M. (2015). Effect of solution pH on the dynamic of biosorption of Cr(VI) by living plants of Salvinia minima. Ecological Engineering, 74, 33–41.

    Article  Google Scholar 

  • Rengaraj, S., Yeon, K.-H., & Moon, S.-H. (2001). Removal of chromium from water and wastewater by ion exchange resins. Journal of Hazardous Materials, B87, 273–287.

    Article  Google Scholar 

  • Schwertmann, U., & Cornell, R. M. (2000). Iron oxides in the laboratory. Weinheim: Wiley-VCH.

    Book  Google Scholar 

  • Sharma, D. C., & Sharma, C. P. (1993). Chromium uptake and its effects on growth and biological yield of wheat. Cereal Research Communication, 21, 317–321.

    CAS  Google Scholar 

  • Sprynskyy, M. (2009). Solid-liquid-solid extraction of heavy metals (Cr, Cu, Cd, Ni and Pb) in aqueous systems of zeolite-sewage sludge. Journal of Hazardous Materials, 161, 1377–1383.

    Article  CAS  Google Scholar 

  • Subrahmanyam, D. (2008). Effects of chromium toxicity on leaf photosynthetic characteristics and oxidative changes in wheat (Triticum aestivum L.). Photosynthetica, 46, 339–345.

    Article  CAS  Google Scholar 

  • Ure, A. M. (1995). Methods of analysis for heavy metals in soils. In B. J. Alloway (Ed.), Heavy metals in soils (pp. 58–102). London: Blackie Academic and Professional.

    Chapter  Google Scholar 

  • Vatan, A. (1967). Manuel de sédimentologie (p. 397). Paris: Technip.

    Google Scholar 

  • World Health Organization. (1996). Health criteria and other supporting information, 2. Geneva: WHO.

    Google Scholar 

  • Yusof, A. M., & Malek, N. A. N. N. (2009). Removal of Cr(VI) and As(V) from aqueous solutions by HDTMA-modified zeolite Y. Journal of Hazardous Materials, 162, 1019–1024.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Ioannou.

Additional information

Part of the paper was presented to 14° Hellenic Soil Science Conference

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ioannou, Z., Molla, A. & Dimirkou, A. Remediation of Polluted with Chromium Waters and Soils Cultivated with Wheat (Triticum durum) Using Zeolites Modified with Iron Oxide. Water Air Soil Pollut 227, 116 (2016). https://doi.org/10.1007/s11270-016-2791-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-016-2791-5

Keywords

Navigation