Skip to main content

Advertisement

Log in

Defluoridation Performance Comparison of Nano-hydrotalcite/Hydroxyapatite Composite with Calcined Hydrotalcite and Hydroxyapatite

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Fluoride retention from water is nowadays a serious health problem. This study reports the potential of a newly developed nano-hydrotalcite/hydroxyapatite (n-HT/HAp) composite, and its constituent materials, hydrotalcite (HT) and hydroxyapatite (HAp), in fluoride removal. Calcined hydrotalcites (cHT) showed a remarkable fluoride removal ability from water through memory effect mechanism. HAp, the mineral compound of bones, adsorbs fluoride as well but through ion exchange mechanism. Fluoride substitutes hydroxyls to produce fluorapatite. Among the tested calcined hydrotalcites, cHT Mg-Al (4:1) sample, composed of magnesium divalent cation to aluminum ratio of 4, was identified as the best-performing hydrotalcite. The differences among cHT samples in fluoride removal capacities are attributed to hydrotalcite composition as well as to particle size. The performance of these materials is compared with that of n-HT/HAp composite whose main features are basic acidic material and not yet tested in fluoride retention. Interestingly, n-HT/HAp also performs best, 98 %, slightly higher than the best cHT Mg-Al (4:1) sample with 97 % fluoride removal efficiency from such a high initial fluoride solution of 20 mg/L at 10 g/L dose, yielding the final residual fluoride concentrations of 0.36 and 0.6 mg/L, respectively; both meet the WHO standard for drinking water. Besides, the uncalcined hydrotalcite constituent added virtue to the advantage of using n-HT/HAp in fluoride removal as the efficiency was compensated by the nanometric size of the hydrotalcite particle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abe, I., Iwasaki, S., Tokimoto, T., Kawasaki, N., Nakamura, T., & Tanada, S. (2004). Journal of Colloid and Interface Science, 275, 35–39.

    Article  CAS  Google Scholar 

  • Badillo-Almaraz, V. E., Flores, J. A., Arriola, H., López, F. A., & Ruiz-Ramírez, L. (2007). Journal of Radioanalytical and Nuclear Chemistry, 271, 741–744.

    Article  CAS  Google Scholar 

  • Bengtsson, Å., Shchukarev, A., Persson, P., & Sjöberg, S. (2009). Langmuir, 25, 2355–2362.

    Article  CAS  Google Scholar 

  • Chen, N., Zhang, Z., Feng, C., Li, M., Zhu, D., Chen, R., & Sugiura, N. (2010). Journal of Hazardous Materials, 183, 460–465.

    Article  CAS  Google Scholar 

  • Chinoy, N. J., Rao, M. V., Narayana, M. V., & Neelakanta, E. (1991). Reproductive Toxicology, 5, 505–512.

    Article  CAS  Google Scholar 

  • Christoffersen, J., Christoffersen, M. R., Arends, J., & Leonardsen, E. S. (1995). Caries Research, 29, 223–230.

    Article  CAS  Google Scholar 

  • de Roy, A., Forano, C., & Besse, J. P. (2006). Layered double hydroxides: synthesis and post-synthesis modification. In V. Rives (Ed.), Layered double hydroxides: present and future. New York: Nova Science Publishers Inc.

    Google Scholar 

  • Díaz-Barriga, F., Navarro-Quezada, A., Grijalva, M. I., Grimaldo, M., Loyola-Rodríguez, J. P., & Deogracias-Ortiz, M. (1997). Fluoride, 30, 233–239.

    Google Scholar 

  • Erickson, K. L., Bostrom, T. E., & Frost, R. L. (2004). Materials Letters, 59, 226–229.

    Article  Google Scholar 

  • Feng, L., Xu, W., Liu, T., & Liu, J. (2012). Journal of Hazardous Materials, 221–222, 228–235.

    Article  Google Scholar 

  • Fetter, G., Hernández, F., Maubert, M., Lara, V. H., & Bosch, P. (1997). Journal of Porous Materials, 4, 27–30.

    Article  CAS  Google Scholar 

  • Galicia Chacón, L., Molina Frechero, N., Oropeza, A., Gaona, E., & Juárez López, L. (2011). Revista Internacional de Contaminacion Ambiental, 27, 283–289.

    Google Scholar 

  • Gao, S., Sun, R., Wei, Z. G., Zhao, H. Y., Li, H. X., & Hu, F. (2009). Journal of Fluorine Chemistry, 130, 550–556.

    Article  CAS  Google Scholar 

  • Gómez-Hortigüela, L., Pérez-Pariente, J., Chebude, Y., & Díaz, I. (2014). RSC Advances, 4, 7998–8003.

    Article  Google Scholar 

  • Hammari, L. E. L., Laghzizil, A., Barboux, P., Lahlil, K., & Saoiabi, A. (2004). Journal of Hazardous Materials, B114, 41–44.

    Article  Google Scholar 

  • Hichour, M., Persin, F., Sandeaux, J., & Gavach, C. (2000). Separation and Purification Technology, 18, 1–11.

    Article  CAS  Google Scholar 

  • Jagtap, S., Yenkie, M. K., Labhsetwar, N., & Rayalu, S. (2012). Chemical Reviews, 112, 2454–2466.

    Article  CAS  Google Scholar 

  • Jiménez-Núñez, M. L., Olguín, M. T., & Solache-Ríos, M. (2007). Separation Science and Technology, 42, 3623–3639.

    Article  Google Scholar 

  • Jiménez-Reyes, M., & Solache-Ríos, M. (2010). Journal of Hazardous Materials, 180, 297–302.

    Article  Google Scholar 

  • Kloos, H., & Tekle Haimanot, R. (1999). Distribution of fluoride and fluorosis in Ethiopia and prospects for control. Tropical Medicine and International Health, 4, 355–364.

    Article  CAS  Google Scholar 

  • Leach, S. A. (1959). British Dental Journal, 106, 133–142.

    CAS  Google Scholar 

  • Liang, L., Jing, H., Min, W., & Xue, D. (2006a). Industrial and Engineering Chemistry Research, 45, 8623–8628.

    Article  Google Scholar 

  • Liang, L., Jing, H., Min, W., Evans, D. G., & Xue, D. (2006b). Journal of Hazardous Materials, B133, 119–128.

    Google Scholar 

  • Longanathan, P., Vigneswaran, S., Kandasamy, J., & Naidu, R. (2013). Journal of Hazardous Materials, 248–249, 1–19.

    Article  Google Scholar 

  • McCann, H. G. (1953). Journal of Biological Chemistry, 201, 247–259.

    CAS  Google Scholar 

  • Miyata, S. (1983). Clay Minerals, 31, 305–311.

    Article  CAS  Google Scholar 

  • M. Mourabet, A. El Rhilassi, H. El Boujaady, M. Bennani-Ziatni, R. El Hamri, A. Taitai, J. Saudi Chem. Society (2012). doi:10.1016/j.jscs.2012.03.003.

  • Mullen, J. (2005). British Dental Journal, 199, 1–4.

    Article  Google Scholar 

  • Pandi, K., & Viswanathan, N. (2014). Carbohydrate Polymers, 112, 662–667.

    Article  CAS  Google Scholar 

  • Poinern, G. E. J., Ghosh, M. K., Ng, Y.-J., Issa, T. B., Anand, S., & Singh, P. (2011). Journal of Hazardous Materials, 185, 29–37.

    Article  CAS  Google Scholar 

  • Reimann, C., Bjorvatn, K., Frengstad, B., Melaku, Z., Tekle-Haimanot, R., & Siewers, U. (2003). Science of the Total Environment, 311, 65–80.

    Article  CAS  Google Scholar 

  • Rivera, J. A., Fetter, G., Baños, L., Guzman, J., & Bosch, P. (2009a). Journal of Porous Materials, 16, 401–408.

    Article  CAS  Google Scholar 

  • Rivera, J. A., Fetter, G., & Bosch, P. (2009b). Journal of Porous Materials, 16, 409–418.

    Article  CAS  Google Scholar 

  • Sato, T., Fujita, H., Endo, T., & Shimada, M. (1988). Solid, 5, 219–228.

    CAS  Google Scholar 

  • Sternitzke, V., Kaegi, R., Jean-Nicolas, A., Lewin, E., Hering, J. G., & Johnson, C. A. (2012). Science and Technology, 46, 802–809.

    Article  CAS  Google Scholar 

  • Sundaram, S. C., Viswanathan, N., & Meenakshi, S. (2008a). Journal of Hazardous Materials, 155, 206–215.

    Article  CAS  Google Scholar 

  • Sundaram, C. S., Viswanathan, N., & Meenakshi, S. (2008b). Bioresource Technology, 99, 8226–8230.

    Article  Google Scholar 

  • Sundaram, C. S., Viswanathan, N., & Meenakshi, S. (2009). Journal of Hazardous Materials, 172, 147–151.

    Article  Google Scholar 

  • Tekle-Haimanot, R., Fekadu, A., Bushera, B., Mekonnen, Y. (1995). Fluoride levels in water and endemic fluorosis in Ethiopian Rift valley. 1st International Workshop on Fluorosis Prevention and Defluoridation of Water. Int. Soc. Fluoride Res. eds E. Dahi & H. Bregnhoj. Ngurdoto, Tanzania, October (1995) 18–22.

  • The World Health Organization. (1984). Guidelines for drinking water quality, WHO, volume 1, recommendations. Geneva, Switzerland.

  • The World Health Organization. (1996). Guidelines for drinking water quality, WHO, volume 2, health criteria and other information, second edition. Geneva, Switzerland.

  • UNICEF’s Position on Water Fluoridation: http://www.nofluoride.com/Unicef_fluor.cfm; consulted on march 31, (2014).

  • Viswanathan, N., & Meenakshi, S. (2010). Applied Clay Science, 48, 607–611.

    Article  CAS  Google Scholar 

  • Wang, H., Chen, J., Cai, Y., Ji, J., Liu, L., & Teng, H. H. (2007). Applied Clay Science, 35, 59–66.

    Article  Google Scholar 

  • Zhang, D., Luo, H., Zheng, L., Wang, K., Li, H., Wang, Y., & Feng, H. (2012). Journal of Hazardous Materials, 241–242, 418–426.

    Article  Google Scholar 

Download references

Acknowledgments

PB deeply appreciates Universidad Autónoma Nacional de Mexico for supporting him on his sabbatical leave at AAU. ID is grateful to CSIC for her research leave at AAU. The financial support from the Spanish Government MINECO (project MAT2012-31127) and Mexican Government CONACYT is acknowledged. The Chemistry Department, Addis Ababa University, is also acknowledged for the financial support (TR/008/2011). Taju Sani thanks DU for his study leave at AAU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabel Diaz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sani, T., Adem, M., Fetter, G. et al. Defluoridation Performance Comparison of Nano-hydrotalcite/Hydroxyapatite Composite with Calcined Hydrotalcite and Hydroxyapatite. Water Air Soil Pollut 227, 90 (2016). https://doi.org/10.1007/s11270-016-2786-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-016-2786-2

Keywords

Navigation