Skip to main content
Log in

Physiological Responses of Potamogeton crispus to Different Levels of Ammonia Nitrogen in Constructed Wetland

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The stress tolerance of wetland plants is crucial for their appropriate application in constructed wetland (CW). Ammonia, one of the major pollutants in wastewater, is nutrition for plants at low concentrations but could be toxic at excess concentrations. This study aimed to investigate the effect of external ammonia at different concentrations (0, 1, 2, 4, 8, 10 mg L−1) to a specific submerged plant Potamogeton crispus (P. crispus), which has been used widely in CW. Results showed that the threshold value of ammonia for P. crispus was 4 mg L−1, under which no obvious variations from the control group were detected in all associated observations. When ammonia concentration exceeded 4 mg L−1, plants displayed significant increase in lipid peroxidation product contents (MDA, O2 and H2O2), antioxidant enzyme activities (T-SOD, POD, and CAT), and a corresponding increase in the percentages of electrolyte leakage. However, external ammonia only had slight effect on the chlorophyll synthesis of P. crispus under the studied concentration range. Excess ammonia exposure (≥4 mg L−1) could affect the physiological responses of P. crispus, by inducing oxidative stress and by limitedly altering permeability of cell membrane and plant photosynthesis. The results of this study supplied useful information for the aquatic vegetation collocation in CW design, and it is suggested to take proper application of P. crispus in CW when treating eutrophication or other relatively heavily polluted water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ali, M., Vajpayee, P., Tripathi, R., Rai, U., Kumar, A., Singh, N., Behl, H., & Singh, S. (2000). Mercury bioaccumulation induces oxidative stress and toxicity to submerged macrophyte Potamogeton crispus L. Bulletin of Environmental Contamination and Toxicology, 65, 573–582.

    Article  CAS  Google Scholar 

  • Asada, K. (1992). Ascorbate peroxidase—a hydrogen peroxide-scavenging enzyme in plants. Physiologia Plantarum, 85, 235–241.

    Article  CAS  Google Scholar 

  • Barata, C., Varo, I., Navarro, J. C., Arun, S., & Porte, C. (2005). Antioxidant enzyme activities and lipid peroxidation in the freshwater cladoceran Daphnia magna exposed to redox cycling compounds. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 140, 175–186.

    Google Scholar 

  • Brix, H. (1997). Do macrophytes play a role in constructed treatment wetlands? Water Sci Technol, 35, 11–17.

    Article  CAS  Google Scholar 

  • Cao, T., Ni, L., & Xie, P. (2004). Acute biochemical responses of a submersed macrophyte, Potamogeton crispus L., to high ammonium in an aquarium experiment. J Freshwater Ecol, 19, 279–284.

    Article  CAS  Google Scholar 

  • Dewez, D., Geoffroy, L., Vernet, G., & Popovic, R. (2005). Determination of photosynthetic and enzymatic biomarkers sensitivity used to evaluate toxic effects of copper and fludioxonil in alga Scenedesmus obliquus. Aquatic Toxicology, 74, 150–159.

    Article  CAS  Google Scholar 

  • Dunne, E. J., Coveney, M. F., Hoge, V. R., Conrow, R., Naleway, R., Lowe, E. F., Battoe, L. E., & Wang, Y. (2015). Phosphorus removal performance of a large-scale constructed treatment wetland receiving eutrophic lake water. Ecol Eng, 79, 132–142.

    Article  Google Scholar 

  • Huang, L., Lu, Y., Gao, X., Du, G., Ma, X., Liu, M., Guo, J., & Chen, Y. (2013). Ammonium-induced oxidative stress on plant growth and antioxidative response of duckweed (Lemna minor L.). Ecol Eng, 58, 355–362.

    Article  Google Scholar 

  • Jampeetong, A., & Brix, H. (2009). Effects of NH +4 concentration on growth, morphology and NH +4 uptake kinetics of Salvinia natans. Ecol Eng, 35, 695–702.

    Article  Google Scholar 

  • Jampeetong, A., Brix, H., & Kantawanichkul, S. (2012). Response of Salvinia cucullata to high NH +4 concentrations at laboratory scales. Ecotox Environ Safe, 79, 69–74.

    Article  CAS  Google Scholar 

  • Jiao, L., Wang, S. & Jin, X. (2009). Physiological responses of Myriophyllum spicatum to ammonium nitrogen. Ying yong sheng tai xue bao= The journal of applied ecology/Zhongguo sheng tai xue xue hui, Zhongguo ke xue yuan Shenyang ying yong sheng tai yan jiu suo zhu ban, 20, 2283-2288.

  • Jin, X., Guo, J., Xu, Q., Hu, X., & Zhang, R. (2008). Effects of different concentrations of NH +4 on antioxidant system of Hydrilla verticillata and Myriophyllum spicatum. Ecology and Environment, 17, 1–5.

    CAS  Google Scholar 

  • Li, C., Zhang, B., Zhang, J., Wu, H., Xie, H., Xu, J., & Qi, P. (2011). Physiological responses of three plant species exposed to excess ammonia in constructed wetland. Desalin Water Treat, 32, 271–276.

    Article  CAS  Google Scholar 

  • Lichtenthaler, H. K. (1987). Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods in enzymology, 148, 350–382.

    Article  CAS  Google Scholar 

  • Livingstone, D. (2003). Oxidative stress in aquatic organisms in relation to pollution and aquaculture. Revue de Medecine Veterinaire, 154, 427–430.

    CAS  Google Scholar 

  • Manios, T., Stentiford, E. I., & Millner, P. A. (2003). The effect of heavy metals accumulation on the chlorophyll concentration of Typha latifolia plants, growing in a substrate containing sewage sludge compost and watered with metaliferus water. Ecol Eng, 20, 65–74.

    Article  Google Scholar 

  • Mates, J. (2000). Effects of antioxidant enzymes in the molecular control of reactive oxygen species toxicology. Toxicology, 153, 83–104.

    Article  CAS  Google Scholar 

  • Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, 7, 405–410.

    Article  CAS  Google Scholar 

  • Mittler, R., Vanderauwera, S., Gollery, M., & Van Breusegem, F. (2004). Reactive oxygen gene network of plants. Trends in Plant Science, 9, 490–498.

    Article  CAS  Google Scholar 

  • Moran, J. F., Becana, M., Iturbe-Ormaetxe, I., Frechilla, S., Klucas, R. V., & Aparicio-Tejo, P. (1994). Drought induces oxidative stress in pea plants. Planta, 194, 346–352.

    Article  CAS  Google Scholar 

  • Nimptsch, J., & Pflugmacher, S. (2007). Ammonia triggers the promotion of oxidative stress in the aquatic macrophyte Myriophyllum mattogrossense. Chemosphere, 66, 708–714.

    Article  CAS  Google Scholar 

  • Nivala, J., Hoos, M. B., Cross, C., Wallace, S., & Parkin, G. (2007). Treatment of landfill leachate using an aerated, horizontal subsurface-flow constructed wetland. Sci Total Environ, 380, 19–27.

    Article  CAS  Google Scholar 

  • Ogawa, K. i., Kanematsu, S., & Asada, K. (1997). Generation of superoxide anion and localization of Cu Zn-superoxide dismutase in the vascular tissue of spinach hypocotyls: their association with lignification. Plant and Cell Physiology, 38, 1118–1126.

    Article  CAS  Google Scholar 

  • Rikans, L. E., & Hornbrook, K. R. (1997). Lipid peroxidation, antioxidant protection and aging. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1362, 116–127.

    Article  CAS  Google Scholar 

  • Somashekaraiah, B., Padmaja, K., & Prasad, A. (1992). Phytotoxicity of cadmium ions on germinating seedlings of mung bean (Phaseolus vulgaris): involvement of lipid peroxides in chlorophyll degradation. Physiologia Plantarum, 85, 85–89.

    Article  CAS  Google Scholar 

  • Stottmeister, U., Wießner, A., Kuschk, P., Kappelmeyer, U., Kästner, M., Bederski, O., Müller, R. A., & Moormann, H. (2003). Effects of plants and microorganisms in constructed wetlands for wastewater treatment. Biotechnology Advances, 22, 93–117.

    Article  CAS  Google Scholar 

  • Vymazal, J. (2013). The use of hybrid constructed wetlands for wastewater treatment with special attention to nitrogen removal: a review of a recent development. Water Res, 47, 4795–4811.

    Article  CAS  Google Scholar 

  • Wang, C., Zhang, S. H., Wang, P. F., Hou, J., Li, W., & Zhang, W. J. (2008). Metabolic adaptations to ammonia-induced oxidative stress in leaves of the submerged macrophyte Vallisneria natans (Lour.) Hara. Aquatic Toxicology, 87, 88–98.

    Article  CAS  Google Scholar 

  • Wang, C., Zhang, S. H., Wang, P. F., Li, W., & Lu, J. (2010). Effects of ammonium on the antioxidative response in Hydrilla verticillata (Lf) Royle plants. Ecotox Environ Safe, 73, 189–195.

    Article  CAS  Google Scholar 

  • Wang, Y., Wang, J., Zhao, X., Song, X., & Gong, J. (2016). The inhibition and adaptability of four wetland plant species to high concentration of ammonia wastewater and nitrogen removal efficiency in constructed wetlands. Bioresource Technol, 202, 198–205.

    Article  CAS  Google Scholar 

  • Winston, G. W., & Di Giulio, R. T. (1991). Prooxidant and antioxidant mechanisms in aquatic organisms. Aquatic Toxicology, 19, 137–161.

    Article  CAS  Google Scholar 

  • Wolfe, N., & Hoehamer, C. (2003). Enzymes used by plants and microorganisms to detoxify organic compounds. In S. C. McCutcheon & J. L. Schnoor (Eds.), Phytoremediation: Transformation and control of contaminants (pp. 159–187). Hoboken: Wiley.

  • Xu, J., Zhang, J., Xie, H., Li, C., Bao, N., Zhang, C., & Shi, Q. (2010a). Physiological responses of Phragmites australis to wastewater with different chemical oxygen demands. Ecol Eng, 36, 1341–1347.

    Article  Google Scholar 

  • Xu, Q., Hu, J., Xie, K., Yang, H., Du, K., & Shi, G. (2010b). Accumulation and acute toxicity of silver in Potamogeton crispus L. J Hazard Mater, 173, 186–193.

    Article  CAS  Google Scholar 

  • Xu, Y., Shi, G., Ding, C., & Xu, X. (2011). Polyamine metabolism and physiological responses of Potamogeton crispus leaves under lead stress. Russian Journal of Plant Physiology, 58, 460–466.

    Article  CAS  Google Scholar 

  • Xu, Q., Min, H., Cai, S., Fu, Y., Sha, S., Xie, K., & Du, K. (2012). Subcellular distribution and toxicity of cadmium in Potamogeton crispus L. Chemosphere, 89, 114–120.

    Article  CAS  Google Scholar 

  • Ye, X. & Guo, X. (2011). Testing of winter vegetation construction and water purification effect of a cascaded wetland model of Jialu river Water Resource and Environmental Protection (ISWREP), 2011 International Symposium on, 658-661.

  • Yordanova, R., Alexieva, V., & Popova, L. (2003). Influence of root oxygen deficiency on photosynthesis and antioxidant status in Barley plants1. Russian Journal of Plant Physiology, 50, 163–167.

    Article  CAS  Google Scholar 

  • Zhang, M., Cao, T., Ni, L., Xie, P., & Li, Z. (2010). Carbon, nitrogen and antioxidant enzyme responses of Potamogeton crispus to both low light and high nutrient stresses. Environmental and Experimental Botany, 68, 44–50.

    Article  CAS  Google Scholar 

  • Zhu, Z, Yuan, H, Wei, Y, Li, P, Zhang, P, & Xie, D (2015). Effects of ammonia nitrogen and sediment nutrient on growth of the submerged plant Vallisneria natans. CLEAN – Soil, Air, Water, 43(12), 1653–1659.

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 21307076, No. 51578321 and No. 21507072) and the Fundamental Research Funds of Shandong University (No. 2014TB003 and No. 2015JC056).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, X., Zhang, J., Guo, Y. et al. Physiological Responses of Potamogeton crispus to Different Levels of Ammonia Nitrogen in Constructed Wetland. Water Air Soil Pollut 227, 65 (2016). https://doi.org/10.1007/s11270-016-2763-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-016-2763-9

Keywords

Navigation