Skip to main content
Log in

Bioaugmentation with Novel Microbial Formula vs. Natural Attenuation of a Long-Term Mixed Contaminated Soil—Treatability Studies in Solid- and Slurry-Phase Microcosms

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Treatability studies in real contaminated soils are essential to predict the feasibility of microbial consortium augmentation for field-scale bioremediation of contaminated sites. In this study, the biodegradation of a mixture of seven PAHs in a manufactured gas plant (MGP) soil contaminated with 3967 mg kg−1 of total PAHs using novel acid-, metal-tolerant, N-fixing, P-solubilizing, and biosurfactant-producing LMW and HMW PAH-degrading bacterial combinations as inoculums was compared in slurry- and solid-phase microcosms over natural attenuation. Bioaugmentation of 5 % of bacterial consortia A and N in slurry- and solid-phase systems enhanced 4.6–5.7 and 9.3–10.7 % of total PAH degradation, respectively, over natural attenuation. Occurrence of 62.7–88 % of PAH biodegradation during natural attenuation in soil and slurry illustrated the accelerated rate of intrinsic metabolic activity of the autochthonous microbial community in the selected MGP soil. Monitoring of the total microbial activity and population of PAH degraders revealed that the observed biodegradation trend in MGP soil resulted from microbial mineralization. In the slurry, higher biodegradation rate constant (k) and lower half-life values (t 1/2) was observed during bioaugmentation with consortium N, highlighting the use of bioaugmentation in bioslurries/bioreactor to achieve rapid and efficient bioremediation compared to that of a static solid system. In general, natural attenuation was on par with bioaugmentation. Hence, depending on the type of soil, natural attenuation might outweigh bioaugmentation and a careful investigation using laboratory treatability studies are highly recommended before the upscale of a developed bioremediation strategy to field level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adam, G., & Duncan, H. (2001). Development of a sensitive and rapid method for the measurement of total microbial activity using fluorescein diacetate (FDA) in a range of soils. Soil Biology and Biochemistry, 33, 943–951.

    Article  CAS  Google Scholar 

  • Alexander, M. (1999). Biodegradation and bioremediation (pp. 195–199). London, England: Academic press.

    Google Scholar 

  • Alexander, M. (2000). Aging, bioavailability and overestimation of risk from environmental pollutants. Environmental Science and Technology, 34, 4259–4265.

    Article  CAS  Google Scholar 

  • Bento, F. M., Camargo, F. A., Okeke, B. C., & Frankenberger, W. T. (2005). Comparative bioremediation of soils contaminated with diesel oil by natural attenuation, biostimulation and bioaugmentation. Bioresource Technology, 96, 1049–1055.

    Article  CAS  Google Scholar 

  • Boonchan, S., Britz, M. L., & Stanley, G. A. (2000). Degradation and mineralization of high-molecular-weight polycyclic aromatic hydrocarbons by defined fungal-bacterial cocultures. Applied and Environmental Microbiology, 66, 1007–1019.

    Article  CAS  Google Scholar 

  • Bossert, I. D., & Bartha, R. (1986). Structure-biodegradability relationships of polycyclic aromatic hydrocarbons in soil. Bulletin of Environmental Contamination and Toxicology, 37, 490–495.

    Article  CAS  Google Scholar 

  • Cameotra, S. S., & Bollag, J. M. (2003). Biosurfactant-enhanced bioremediation of polycyclic aromatic hydrocarbons. Critical Reviews in Environmental Science and Technology, 33, 111–126.

    Article  CAS  Google Scholar 

  • Chen, S. H., & Aitken, M. D. (1999). Salicylate stimulates the degradation of high-molecular weight polycyclic aromatic hydrocarbons by Pseudomonas saccharophila P15. Environmental Science and Technology, 33, 435–439.

    Article  CAS  Google Scholar 

  • Collina, E., Bestetti, G., Di Gennaro, P., Franzetti, A., Gugliersi, F., Lasagni, M., & Pitea, D. (2005). Naphthalene biodegradation kinetics in an aerobic slurry-phase bioreactor. Environmental International, 31, 167–171.

    Article  CAS  Google Scholar 

  • Desai, A. M., Autenrieth, R. L., Dimitriou-Christidis, P., & McDonald, T. J. (2008). Biodegradation kinetics of select polycyclic aromatic hydrocarbon (PAH) mixtures by Sphingomonas paucimobilis EPA505. Biodegradation, 19, 223–233.

    Article  CAS  Google Scholar 

  • Doick, K. J., & Semple, K. T. (2003). The effect of soil: water ratios on the mineralisation of phenanthrene: LNAPL mixtures in soil. FEMS Microbiology Letters, 220, 29–33.

    Article  CAS  Google Scholar 

  • Edgehill, R. U. (1999) Bioremediation by Inoculation with Microorganisms. Bioremediation of contaminated soils. Agronomy monograph no. 37, Soil Science Society of Americam Madison, WI, pp. 289–295.

  • Ho, C. H., & Banks, M. (2006). Degradation of polycyclic aromatic hydrocarbons in the rhizosphere of Festuca arundinacea and associated microbial community changes. Bioremediation Journal, 10, 93–104.

    Article  CAS  Google Scholar 

  • Huesemann, M. H., Hausmann, T. S., & Fortman, T. J. (2004). Does bioavailability limit biodegradation? A comparison of hydrocarbon biodegradation and desorption rates in aged soils. Biodegradation, 15, 261–274.

    Article  CAS  Google Scholar 

  • Jacques, R. J., Okeke, B. C., Bento, F. M., Teixeira, A. S., Peralba, M. C., & Camargo, F. A. (2008). Microbial consortium bioaugmentation of a polycyclic aromatic hydrocarbons contaminated soil. Bioresource Technology, 99, 2637–2643.

    Article  CAS  Google Scholar 

  • Juhasz, A. L., Stanley, G. A., & Britz, M. L. (2000). Degradation of high molecular weight PAHs in contaminated soil by a bacterial consortium: Effects on microtox and mutagenicity bioassays. Bioremediation Journal, 4, 271–283.

    Article  CAS  Google Scholar 

  • Kanaly, R. A., & Harayama, S. (2010). Advances in the field of high-molecular-weight polycyclic aromatic hydrocarbon biodegradation by bacteria. Journal of Microbiology and Biotechnology, 3, 136–164.

    Article  CAS  Google Scholar 

  • Li, X., Li, P., Lin, X., Zhang, C., Li, Q., & Gong, Z. (2008). Biodegradation of aged polycyclic aromatic hydrocarbons (PAHs) by microbial consortia in soil and slurry phases. Journal of Hazardous Materials, 150, 21–26.

    Article  CAS  Google Scholar 

  • Lorch, H. J., Benckieser, G., & Ottow, J. C. G. (1995). Basic methods for counting microorganisms in soil water: most probable number (pp. 146–161). New York: Academic Press.

    Google Scholar 

  • Mao, J., Luo, Y., Teng, Y., & Li, Z. (2012). Bioremediation of polycyclic aromatic hydrocarbon-contaminated soil by a bacterial consortium and associated microbial community changes. International Biodeterioration and Biodegradation, 70, 141–147.

    Article  CAS  Google Scholar 

  • Mueller, J. G., Chapman, P. J., Blattmann, B. O., & Pritchard, P. (1990). Isolation and characterization of a fluoranthene-utilizing strain of Pseudomonas paucimobilis. Applied and Environmental Microbiology, 56, 1079–1086.

    CAS  Google Scholar 

  • Nam, K., Rodriguez, W., & Kukor, J. J. (2001). Enhanced degradation of polycyclic aromatic hydrocarbons by biodegradation combined with a modified Fenton reaction. Chemosphere, 45, 11–20.

    Article  CAS  Google Scholar 

  • Nano, G., Borroni, A., & Rota, R. (2003). Combined slurry and solid-phase bioremediation of diesel contaminated soils. Journal of Hazardous Materials, 100, 79–94.

    Article  CAS  Google Scholar 

  • Pereira Netto, A. D., Moreira, J. C., Dias, A. E. X., Arbilla, G., Ferreira, L. F. V., Oliveira, A. S., & Barek, J. (2000). Evaluation of human contamination with polycyclic aromatic hydrocarbons (PAHs) and their nitrated derivatives (NHPAS): a review of methodology. Quimica Nova, 23, 765–773.

    Article  CAS  Google Scholar 

  • Phale, P. S., Basu, A., Majhi, P. D., Deveryshetty, J., Vamsee-Krishna, C., & Shrivastava, R. (2007). Metabolic diversity in bacterial degradation of aromatic compounds. OMICS, 11, 252–279.

    Article  CAS  Google Scholar 

  • Sabate, J., Vinas, M., & Solanas, A. (2004). Laboratory-scale bioremediation experiments on hydrocarbon-contaminated soils. International Biodeterioration and Biodegradation, 54, 19–25.

    Article  CAS  Google Scholar 

  • Semple, K. T., Dew, N. M., Doick, K. J., & Rhodes, A. H. (2006). Can microbial mineralization be used to estimate microbial availability of organic contaminants in soil? Environmental Pollution, 140, 164–172.

    Article  CAS  Google Scholar 

  • Stringfellow, W. T., & Aitken, M. D. (1995). Competitive metabolism of naphthalene, methylnaphthalenes, and fluorene by phenanthrene-degrading Pseudomonads. Applied and Environmental Microbiology, 61, 357–362.

    CAS  Google Scholar 

  • Thavamani, P., Megharaj, M., & Naidu, R. (2012). Bioremediation of high molecular weight polyaromatic hydrocarbons co-contaminated with metals in liquid and soil slurries by metal tolerant PAHs degrading bacterial consortium. Biodegradation, 23, 823–835.

    Article  CAS  Google Scholar 

  • Thavamani, P., Megharaj, M., & Naidu, R. (2015). Metal-tolerant PAH-degrading bacteria: development of suitable test medium and effect of cadmium and its availability on PAH biodegradation. Environmetal Science and Pollution Research, 22, 8957–8968.

  • Thiele-Bruhn, S., & Brümmer, G. (2005). Kinetics of polycyclic aromatic hydrocarbon (PAH) degradation in long-term polluted soils during bioremediation. Plant and Soil, 275, 31–42.

    Article  CAS  Google Scholar 

  • van Veen, J. A., van Overbeek, L. S., & van Elsas, J. D. (1997). Fate and activity of microorganisms introduced into soil. Microbiology and Molecular Biology Reviews, 61, 121–135.

    Google Scholar 

  • Vandermeer, K. D., & Daugulis, A. J. (2007). Enhanced degradation of a mixture of polycyclic aromatic hydrocarbons by a defined microbial consortium in a two-phase partitioning bioreactor. Biodegradation, 18, 211–221.

    Article  CAS  Google Scholar 

  • Wang, J., Xu, H., & Guo, S. (2007). Isolation and characteristics of a microbial consortium for effectively degrading phenanthrene. Petroleum Science, 4, 68–75.

    Article  CAS  Google Scholar 

  • Wang, C., Wang, F., Wang, T., Bian, Y., Yang, X., & Jiang, X. (2010). PAHs biodegradation potential of indigenous consortia from agricultural soil and contaminated soil in two-liquid-phase bioreactor (TLPB). Journal of Hazardous Materials, 176, 41–47.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

SK thanks the Australian Government, University of South Australia (UniSA), and Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE) for the International Postgraduate Research Scholarship (IPRS) and CRC CARE top-up fellowship during PhD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saranya Kuppusamy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuppusamy, S., Thavamani, P., Megharaj, M. et al. Bioaugmentation with Novel Microbial Formula vs. Natural Attenuation of a Long-Term Mixed Contaminated Soil—Treatability Studies in Solid- and Slurry-Phase Microcosms. Water Air Soil Pollut 227, 25 (2016). https://doi.org/10.1007/s11270-015-2709-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-015-2709-7

Keywords

Navigation