Skip to main content
Log in

Daytime and Phenological Characteristics of O3 and CO2 Fluxes of Winter Wheat Canopy Under Short-Term O3 Exposure

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

To analyze the daytime and phenological variations of canopy O3 and CO2 uptake of winter wheat, the canopy fluxes of wheat plants were measured using a chamber system with four different O3 levels (0, 40, 80, and 120 nmol mol−1) being applied. During the daytime (7:30–18:00 hours), canopy fluxes usually peaked around noon in early growing stages, while a generally decreasing trend from morning to afternoon was observed in the later stages. O3 and CO2 fluxes were positively and negatively correlated with O3 concentration, respectively. Significant differences were observed in O3 fluxes but CO2 fluxes among O3 treatments. Photosynthetically active radiation (PAR) and vapor pressure deficit (VPD) could affect canopy gas uptake in opposite ways. On the phenological timescale, both O3 and CO2 fluxes followed the variation of leaf area index (LAI) with the maximum occurring simultaneously at the booting stage. The daytime mean fluxes varied from −10.6 to −17.2 nmol m−2 s−1 for O3 and from −5.9 to −19.6 μmol m−2 s−1 for CO2. Quantitatively important O3 deposition (−3.1∼−11.6 nmol m−2 s−1) was also observed at night with the ratios being about 40∼70 % relative to the daytime O3 fluxes for most measuring days, which indicates a significant contribution from non-stomatal components to canopy O3 removal. This study confirms that environmental variables and plant phenology are important factors in regulating canopy O3 and CO2 uptake. O3 exposure (≤120 nmol mol−1) could not significantly affect the CO2 uptake of wheat canopy in a short time (ca. 10 min).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Altimir, N., Vesala, T., Keronen, P., Kulmala, M., & Hari, P. (2002). Methodology for direct field measurements of ozone flux to foliage with shoot chambers. Atmospheric Environment, 36, 19–29.

    Article  CAS  Google Scholar 

  • Amiro, B. D., Gillespie, T. J., & Thurtell, G. W. (1984). Injury response of Phaseolus vulgaris to ozone flux density. Atmospheric Environment, 18, 1207–1215.

    Article  CAS  Google Scholar 

  • Buck, A. L. (1981). New equations for computing vapor pressure and enhancement factor. Journal of Applied Meteorology, 20, 1527–1532.

    Article  Google Scholar 

  • Castagna, A., Nali, C., Ciompi, S., Lorenzini, G., Soldatini, G. F., & Ranieri, A. (2001). Ozone exposure affects photosynthesis of pumpkin (Cucurbita pepo) plants. New Phytologist, 152, 223–229.

    Article  CAS  Google Scholar 

  • LRTAP Convention (2010). Mapping Manual 2004. Manual on methodologies and criteria for modeling and mapping critical loads & levels and air pollution effects, risk and trends. Chapter 3. Mapping critical levels for vegetation, 2010 revision. Available from: http://icpvegetation.ceh.ac.uk

  • Ennis, C. A., Lazrus, A. L., Kok, G. L., Zimmerman, P. R., & Monson, R. K. (1990). A branch chamber system and techniques for simultaneous pollutant exposure experiments and gaseous flux determinations. Tellus B, 42, 170–182.

    Article  Google Scholar 

  • Fares, S., McKay, M., Holzinger, R., & Goldstein, A. H. (2010). Ozone fluxes in a Pinus ponderosa ecosystem are dominated by non-stomatal processes: evidence from long-term continuous measurements. Agricultural and Forest Meteorology, 150, 420–431.

    Article  Google Scholar 

  • Feng, Z. W., Jin, M. H., Zhang, F. Z., & Huang, Y. Z. (2003). Effects of ground-level ozone (O-3) pollution on the yields of rice and winter wheat in the Yangtze River Delta. Journal of Environmental Sciences-China, 15, 360–362.

    CAS  Google Scholar 

  • Feng, Z., Kobayashi, K., & Ainsworth, E. A. (2008). Impact of elevated ozone concentration on growth, physiology, and yield of wheat (Triticum aestivum L.): a meta-analysis. Global Change Biology, 14, 2696–2708.

    Google Scholar 

  • Fowler, D., Flechard, C., Cape, J. N., Storeton-West, R. L., & Coyle, M. (2001). Measurements of ozone deposition to vegetation quantifying the flux, the stomatal and non-stomatal components. Water, Air, and Soil Pollution, 130, 63–74.

    Article  CAS  Google Scholar 

  • Fuentes, J. D., & Gillespie, T. J. (1992). A gas-exchange system to study the effects of leaf surface wetness on the deposition of ozone. Atmospheric Environment Part a-General Topics, 26, 1165–1173.

    Article  Google Scholar 

  • Garcia, R. L., Norman, J. M., & McDermitt, D. K. (1990). Measurements of canopy gas exchange using an open chamber system. Remote Sensing Reviews, 5, 141–162.

    Article  Google Scholar 

  • Gerosa, G., Cieslik, S., & Ballarin-Denti, A. (2003). Micrometeorological determination of time-integrated stomatal ozone fluxes over wheat: a case study in Northern Italy. Atmospheric Environment, 37, 777–788.

    Article  CAS  Google Scholar 

  • Grimm, A. G., & Fuhrer, J. (1992a). The response of spring wheat (Triticum aestivum L) to ozone at higher elevations. I. Measurement of ozone and carbon-dioxide fluxes in open-top field chambers. New Phytologist, 121, 201–210.

    Article  CAS  Google Scholar 

  • Grimm, A. G., & Fuhrer, J. (1992b). The response of spring wheat (Triticum aestivum L.) to ozone at higher elevations. III. Responses of leaf and canopy gas exchange, and chlorophyll fluorescence to ozone flux. New Phytologist, 122, 321–328.

    Article  CAS  Google Scholar 

  • Grulke, N. E., Paoletti, E., & Heath, R. L. (2007). Comparison of calculated and measured foliar O-3 flux in crop and forest species. Environmental Pollution, 146, 640–647.

    Article  CAS  Google Scholar 

  • Kanerva, T., Regina, K., Ramo, K., Ojanpera, K., & Manninen, S. (2007). Fluxes of N2O, CH4 and CO2 in a meadow ecosystem exposed to elevated ozone and carbon dioxide for three years. Environmental Pollution, 145, 818–828.

    Article  CAS  Google Scholar 

  • Kerstiens, G., Federholzner, R., & Lendzian, K. J. (1992). Dry deposition and cuticular uptake of pollutant gases. Agriculture, Ecosystems & Environment, 42, 239–253.

    Article  CAS  Google Scholar 

  • Kupisch, M., Stadler, A., Langensiepen, M., & Ewert, F. (2015). Analysis of spatio-temporal patterns of CO2 and H2O fluxes in relation to crop growth under field conditions. Field Crops Research, 176, 108–118.

    Article  Google Scholar 

  • Laisk, A., Kull, O., & Moldau, H. (1989). Ozone concentration in leaf intercellular air spaces is close to zero. Plant Physiology, 90, 1163–1167.

    Article  CAS  Google Scholar 

  • Meehl, G.A., Stocker, T.F., Collins, W.D., Friedlingstein, P., Gaye, A.T., Gregory, J.M., et al. (2007). Global Climate Projections. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L. (Eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. pp. 747–845

  • Mishra, A. K., Rai, R., & Agrawal, S. B. (2013). Individual and interactive effects of elevated carbon dioxide and ozone on tropical wheat (Triticum aestivum L.) cultivars with special emphasis on ROS generation and activation of antioxidant defence system. Indian Journal of Biochemistry & Biophysics, 50, 139–149.

    CAS  Google Scholar 

  • Ohkubo, S., Nagata, O., & Hirota, T. (2015). Estimating nee in a wheat-planted plot with an automatically controlled chamber. Soil Science & Plant Nutrition, 61(1), 76–87.

    Article  CAS  Google Scholar 

  • Palaniswamy, K., & Gomez, K. (1974). Length-width method for estimating leaf area of rice. Agronomy Journal, 66(3), 430–433.

    Article  Google Scholar 

  • Pleijel, H., Danielsson, H., Karlsson, G. P., Gelang, J., Karlsson, P. E., & Sellden, G. (2000). An ozone flux-response relationship for wheat. Environmental Pollution, 109, 453–462.

    Article  CAS  Google Scholar 

  • Pleijel, H., Danielsson, H., Emberson, L., Ashmore, M. R., & Mills, G. (2007). Ozone risk assessment for agricultural crops in Europe: further development of stomatal flux and flux-response relationships for European wheat and potato. Atmospheric Environment, 41, 3022–3040.

    Article  CAS  Google Scholar 

  • Potier, E., Ogée, J., Jouanguy, J., Lamaud, E., Stella, P., Personne, E., Durand, B., Mascher, N., & Loubet, B. (2015). Multilayer modelling of ozone fluxes on winter wheat reveals large deposition on wet senescing leaves. Agricultural and Forest Meteorology, 211, 58–71.

    Article  Google Scholar 

  • Rai, R., Agrawal, M., & Agrawal, S. B. (2011). Effects of ambient O-3 on wheat during reproductive development: gas exchange, photosynthetic pigments, chlorophyll fluorescence, and carbohydrates. Photosynthetica, 49, 285–294.

    Article  CAS  Google Scholar 

  • Roshchina, V. V., & Roshchina, V. D. (2003). Ozone and plant cell (pp. 31–34). Dordrecht, Netherlands: Kluwer Academic Publishers.

    Book  Google Scholar 

  • Shi, L., Hu, Y. G., & Liu, X. P. (2011). Comparative studies on photosynthetic and fluorescence characteristics of different winter wheat varieties (lines). Acta Agriculturae Boreali-Occidentalis Sinica, 20(2), 48–55.

    Google Scholar 

  • Sild, E., Pleijel, H., & Selldén, G. (2002). Elevated ozone (O3) alters carbohydrate metabolism during grain filling in wheat (Triticum aestivum L.). Agriculture, Ecosystems & Environment, 92(1), 71–81.

    Article  CAS  Google Scholar 

  • Stella, P., Personne, E., Lamaud, E., Loubet, B., Trebs, I., & Cellier, P. (2013). Assessment of the total, stomatal, cuticular, and soil 2 year ozone budgets of an agricultural field with winter wheat and maize crops. Journal of Geophysical Research-Biogeosciences, 118, 1120–1132.

    CAS  Google Scholar 

  • Tang, H., Takigawa, M., Liu, G., Zhu, J., & Kobayashi, K. (2013). A projection of ozone-induced wheat production loss in China and India for the years 2000 and 2020 with exposure-based and flux-based approaches. Global Change Biology, 19, 2739–2752.

    Article  Google Scholar 

  • Tong, L., Wang, X., Geng, C., Wang, W., Lu, F., Song, W., et al. (2011). Diurnal and phenological variations of O-3 and CO2 fluxes of rice canopy exposed to different O-3 concentrations. Atmospheric Environment, 45, 5621–5631.

    Article  CAS  Google Scholar 

  • Vingarzan, R. (2004). A review of surface ozone background levels and trends. Atmospheric Environment, 38, 3431–3442.

    Article  CAS  Google Scholar 

  • Wang, X. P., & Mauzerall, D. L. (2004). Characterizing distributions of surface ozone and its impact on grain production in China, Japan and South Korea: 1990 and 2020. Atmospheric Environment, 38, 4383–4402.

    Article  CAS  Google Scholar 

  • Wang, X., Manning, W., Feng, Z., & Zhu, Y. (2007). Ground-level ozone in China: distribution and effects on crop yields. Environmental Pollution, 147, 394–400.

    Article  CAS  Google Scholar 

  • Wang, W., Liao, Y., Wen, X., & Guo, Q. (2013). Dynamics of CO2 fluxes and environmental responses in the rain-fed winter wheat ecosystem of the Loess Plateau, China. Science of the Total Environment, 461, 10–18.

    Article  CAS  Google Scholar 

  • Xu, W. Z., Deng, X. P., & Xu, B. C. (2013). Effects of water stress and fertilization on leaf gas exchange and photosynthetic light-response curves of Bothriochloa ischaemum L. Photosynthetica, 51, 603–612.

    Article  CAS  Google Scholar 

  • Zhang, X., Fan, C., Ma, Y., Liu, Y., Li, L., Zhou, Q., et al. (2014). Two approaches for net ecosystem carbon budgets and soil carbon sequestration in a rice–wheat rotation system in China. Nutrient Cycling in Agroecosystems, 100(3), 301–313.

    Article  CAS  Google Scholar 

  • Zheng, Y., Mai, B., Wu, R., Feng, Y., Sofo, A., Ni, Y., et al. (2011). Acclimation of winter wheat (Triticum aestivum, cv. Yangmai 13) to low levels of solar irradiance. Photosynthetica, 49, 426–434.

    Article  CAS  Google Scholar 

  • Zhu, Z.-L., Sun, X.-M., Zhao, F.-H., Wen, X.-F., Tang, X.-Z., & Yuan, G.-F. (2012). Variation of ozone concentration of winter wheat field and mechanistic analysis of its possible effect on wheat yield in Northwest-Shandong Plain of China. Chinese Journal of Plant Ecology, 36, 313–323.

    Article  CAS  Google Scholar 

  • Zhu, Z., Sun, X., Zhao, F., & Meixner, F. X. (2015). Ozone concentrations, flux and potential effect on yield during wheat growth in the Northwest-Shandong plain of china. Journal of Environmental Sciences, 8, 1–9.

    Article  Google Scholar 

Download references

Acknowledgments

The research was supported by the Ministry of Environmental Protection (No. 200809152).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Tong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tong, L., Xiao, H., Qian, F. et al. Daytime and Phenological Characteristics of O3 and CO2 Fluxes of Winter Wheat Canopy Under Short-Term O3 Exposure. Water Air Soil Pollut 227, 4 (2016). https://doi.org/10.1007/s11270-015-2698-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-015-2698-6

Keywords

Navigation