Skip to main content
Log in

Combination of Low-Cost Technologies for Pig Slurry Purification Under Semiarid Mediterranean Conditions

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The intensive pig production has been causing huge amounts of pig slurry with high content of potential pollutants. However, there is a lack of information on the efficiency of combined techniques applied to pig slurry purification. The objective of this research was to assess the pollutant removal efficiency and pathogenic microorganism decrease using mechanical treatments, phytoextraction, and microalgae bioremediation. The purification system was located in the southeast of Spain. Physico-chemical and microbiological parameters were studied in each module of treatment. We observed significant declines for total suspended solids (89 %), settleable solids (100 %), chemical oxygen demand (91 %), biochemical oxygen demand (90 %), total phosphorus (97 %), copper (96 %), zinc (92 %), total nitrogen (89 %), total coliforms (78 %), fecal coliforms (70 %), fecal streptococcus (75 %), Salmonella, Shigella, and Escherichia coli (100 %) in the final effluent of the combined purification system. This survey pointed out the effectiveness of phytoextraction and bioremediation treatments. The results indicated the high efficiency of the purification system, minimizing environmental and human risks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • AEMET. Agencia Estatal de Meteorología. Gobierno de España. (2012). In: http://www.aemet.es/ . Updated: April 2014.

  • Antoniou, P., Hamilton, J., Koopman, B., Jain, R., Holloway, B., Lyberatos, G., & Svoronos, S. A. (1990). Effect of temperature and pH on the effective maximum specific growth rate of nitrifying bacteria. Water Research, 24, 97–101.

    Article  CAS  Google Scholar 

  • APHA, AWWA, WEF. (2012). Standard methods for examination of water and wastewater. 22nd American Public Health Association (Eds.). Washington. 1360 pp. In: http://www.standardmethods.org. Updated: May 2014.

  • Ayers, R. S., & Wescot, D. W. (1984). Water quality for agriculture. Irrigation and drainage paper 29. Roma: FAO.

    Google Scholar 

  • Bock, E., Koops, H., Harms, H. (1986). Cell biology of nitrifying bacteria. In Prosser, J. I., (ed.) Nitrification, IRL Press. pp. 17–38.

  • Bonmati, A., & Flotats, X. (2003). Air stripping of ammonia from pig slurry: characterization and feasibility as a pre- or post-treatment to mesophilic anaerobic digestion. Waste Management, 23, 261–272.

    Article  CAS  Google Scholar 

  • Brix, H. (1997). Do macrophytes play a role in constructed treatment wetlands? Water Science and Technology, 35, 11–17.

    Article  CAS  Google Scholar 

  • Burton, C. H. (1997). Manure management—treatment strategies for sustainable agriculture. Silsoe: Silsoe Research Institute.

    Google Scholar 

  • Burton, C. H. (2007). The potential contribution of separation technologies to the management of livestock manure. Livestock Science, 112, 208–216.

    Article  Google Scholar 

  • Caballero-Lajarín, A., Faz Cano, A., Lobera Lössel, J. B. (2012). Humedal artificial y uso del mismo para la fitopurificación de efluentes líquidos. Patent: ES 2 363 363 B2.

  • Carpenter, S. R., Caraco, N. F., Correll, D. L., Howarth, R. W., Sharpley, A. N., & Smith, V. H. (1998). Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecological Applications, 8, 559–568.

    Article  Google Scholar 

  • Christos, S. A., & Tsihrintzis, V. A. (2007). Effect of temperature, HRT, vegetation and porous media on removal efficiency of pilot-scale horizontal subsurface flow constructed wetlands. Ecological Engineering, 29, 173–191.

    Article  Google Scholar 

  • de Godos, I., Blanco, S., García-Encina, P. A., Becares, E., & Muñoz, R. (2009). Long-term operation of high rate algal ponds for the bioremediation of piggery wastewaters at high loading rates. Bioresource Technology, 100(19), 4332–4339.

    Article  Google Scholar 

  • de Godos, I., Vargas, V. A., Blanco, S., García González, M. C., Soto, R., García-Encina, P. A., Becares, E., & Muñoz, R. A. (2010). Comparative evaluation of microalgae for the degradation of piggery wastewater under photosynthetic oxygenation. Bioresource Technology, 101, 5150–5158.

    Article  Google Scholar 

  • de la Noue, J., & Basseres, A. (1989). Biotreatment of anaerobically digested swine manure with microalgae. Biological Wastes, 29, 17–31.

    Article  Google Scholar 

  • DIN 38 409 - H41 -1 and DIN ISO 15705 –H45. German standard methods for the examination of water, wastewater and sludge.

  • Drizo, A., Frost, C. A., Grace, J., & Smith, K. A. (1999). Physico-chemical screening of phosphate-removing substrates for use in constructed wetland systems. Water Research, 33, 3595–3602.

    Article  CAS  Google Scholar 

  • Duchaufour, P. H. (1970). Precis de Pedologie. Masson. Paris. 481 pp.

  • Finlayson, C. M., & Chick, A. J. (1983). Testing the potential of aquatic plants to treat abattoir effluent. Water Research, 17, 415–22.

    Article  CAS  Google Scholar 

  • Ge, Y., Han, W., Huang, C., Wang, H., Liu, D., Chang, S. X., Gu, B., Zhang, C., Gu, B., Fan, X., Du, Y., & Chang, J. (2015). Positive effects of plant diversity on nitrogen removal in microcosms of constructed wetlands with high ammonium loading. Ecological Engineering, 82, 614–623.

    Article  Google Scholar 

  • Gómez-Garrido, M., Martínez-Martínez, S., Faz-Cano, A., Büyükkılıç-Yanardag, A., & Arocena, J. M. (2014). Soil fertility status and nutrients provided to spring barley (Hordeum distichon L.) by pig slurry. Chilean Journal of Agricultural Research, 74(1), 73–82.

    Article  Google Scholar 

  • Haberl, R., Perfler, R., & Mayer, H. (1995). Constructed wetlands in Europe. Water Science and Technology, 32, 305–315.

    Article  CAS  Google Scholar 

  • Healy, M. G., & O’ Flynn, C. J. (2011). The performance of constructed wetlands treating primary, secondary and dairy soiled water in Ireland (a review). Journal of Environmental Management, 92(10), 2348–2354.

    Article  CAS  Google Scholar 

  • Hiley, P. (2003). Performance of wastewater treatment and nutrient removal wetlands. In U. Mander & P. Jenssen (Eds.), Constructed wetlands for wastewater treatment in cold climates (reedbeds) in cold temperature climates (pp. 1–18). Southampton: WIT Press.

    Google Scholar 

  • Hill, V. R., Pasternak, J. I., Rice, J. M., Marra, M. C., Humenik, F. J., Sobsey, M. D., Szogi, A. A., & Hunt, P. G. (1999). Economics of nitrogen and enteric microbe reductions for alternative swine waste treatment techniques. In G. B. Havenstein (Ed.), Proceedings of the animal waste management symposium (pp. 297–301). Raleigh: NCSU Animal Waste Management Field Day Committee.

    Google Scholar 

  • Hoffman, J. P. (1998). Wastewater treatment with suspended and nonsuspended algae. Journal of Phycology, 34, 757–763.

    Article  Google Scholar 

  • Huang, J., Reneau, R. B., Jr., & Hagedorn, C. (2000). Nitrogen removal in constructed wetlands employed to treat domestic wastewater. Water Research, 34(9), 2582–2588.

    Article  CAS  Google Scholar 

  • Hunt, P. G., Szogi, A. A., Humenik, F. J., Rice, J. M., Matheny, T. A., & Stone, K. C. (2002). Constructed wetlands for treatment of swine wastewaters from an anaerobic lagoon. Transactions of ASAE, 45, 639–647.

    CAS  Google Scholar 

  • Kadlec, R. (1992). Hydrological factors in wetland water treatment. In D. A. Hammer (Ed.), Constructed wetland for wastewater treatment: municipal, industrial and agricultural (pp. 25–29). Chelsea: Lewis Publishers.

    Google Scholar 

  • Kadlec, R., & Knight, R. L. (1996). Treatment wetlands. Boca Raton: Lewis Publishers.

    Google Scholar 

  • Karathanasis, A. D., & Thompson, Y. L. (1993). Substrate effects on metal retention and speciation in simulated acid mine wetlands. Bulletin of Environmental Contamination and Toxicology, 51, 421–429.

    Article  CAS  Google Scholar 

  • Kebede-Wheshead, E., Pizarro, E., & Mulbry, W. W. (2003). Environmental and economic aspects of recycling livestock wastes-algae production using waste products. Southern Journal of Agricultural Economics, 3, 1275–1282.

    Google Scholar 

  • Knight, R. L., Payne, V. W. E., Jr., Borer, R. E., Clarke, R. A., Jr., & Pries, J. H. (2000). Constructed wetlands for livestock wastewater management. Ecological Engineering, 15, 41–55.

    Article  Google Scholar 

  • Knops, J. M. H., Bradley, K. L., & Wedin, D. A. (2002). Mechanisms of plant species impacts on ecosystem nitrogen cycling. Ecology Letters, 5(3), 454–46.

    Article  Google Scholar 

  • Krapaca, I. G., Deya, W. S., Roya, W. R., Smythb, C. A., Stormentc, E., & Sargenta, S. L. (2002). Impacts of swine manure pits on groundwater quality. Environmental Pollution, 120, 475–492.

    Article  Google Scholar 

  • Lee, B. H., & Scholz, M. (2007). What is the role of Phragmites australis in experimental constructed wetland filters treating urban runoff? Ecological Engineering, 29(1), 87–95.

    Article  Google Scholar 

  • Lema, E., Machunda, R., Nicholas, NJAU. (2014). Influence of macrophyte types towards agrochemical phytoremediation in a tropical environment. International Journal of Engineering Research and General Science 2(5).

  • Carrasco, M. L. (2005). Tesis doctoral: Utilización agronómica de purines de cerdo en brócoli y sandía en condiciones mediterráneas semiáridas. Influencia en el sistema suelo- planta. Pp. 374.

  • Lorimor, J., Fulhage, C., Zhang, R., Funk, T., Sheffield, R., Sheppard, D. C., Newton, G.L. (2006). Manure management strategies and technologies. In: Animal agriculture and the environment: National Center for Manure and Animal Waste Management white papers. American Society of Agricultural and Biological Engineers, St. Joseph, MI, USA.

  • Macherey-Nagel GmbH & Co. KG. Web: http://www.mn-net.com. Nanocolor Test; ref: 985 028/29, 985 055, 985 064.

  • Marchand, L., Mench, M., Jacob, D. L., & Ottem, M. L. (2010). Metal and metalloid removal in constructed wetlands, with emphasis on the importance of plants and standardized measurements: a review. Environmental Pollution, 158, 3447–3461.

    Article  CAS  Google Scholar 

  • Mashauri, D. A., Mulungu, D. M. M., & Abdulhussein, B. S. (2000). Constructed wetland at the University of Dar Es Salaam. Water Research, 34, 1135–1144.

    Article  CAS  Google Scholar 

  • Massé, D., Gilbert, Y., & Topp, E. (2011). Pathogen removal in farm-scale psychrophilic anaerobic digesters processing swine manure. Bioresource Technology, 102, 641–646.

    Article  Google Scholar 

  • Melse, R. W., & Verdoes, N. (2005). Evaluation of four farm scale systems for the treatment of liquid pig manure. Biosystems Engineering, 92, 47–57.

    Article  Google Scholar 

  • Molina-Grima, E., (1999). Microalgae mass culture methods. In: Flickinger, M. C., Drew, S.W. (Eds.), Encyclopedia of bioprocess technology: fermentation, biocatalysis and bioseparation. Wiley.

  • Møller, H. B., Lund, I., & Sommer, S. G. (2000). Solid–liquid separation of livestock slurry: efficiency and cost. Bioresource Technology, 74(3), 223–229.

    Article  Google Scholar 

  • Monroy, F., Aira, M., & Domínguez, J. (2009). Reduction of total coliform numbers during vermicomposting is caused by short-term direct effects of earthworms on microorganisms and depends on the dose of application of pig slurry. Science of the Total Environment, 407, 5411–5416.

    Article  CAS  Google Scholar 

  • Moral, R., Pérez-Murcia, M. D., Pérez-Espinosa, A., Moreno-Caselles, J., & Paredes, C. (2005). Estimation of nutrient values of pig slurries in southeast Spain using easily determined properties. Waste Management, 25, 719–725.

    Article  CAS  Google Scholar 

  • Mulbry, W., Kebede Westhead, E., Pizarro, C., & Sikora, L. (2005). Recycling of manure nutrients: use of algal biomass from dairy manure treatment as a slow release fertilizer. Bioresource Technology, 96(4), 451–458.

    Article  CAS  Google Scholar 

  • Muñoz, R., & Guieysse, B. (2006). Algal-bacteria processes for the treatment of hazardous contaminants, a review. Water Research, 40(2006), 2799–2815.

    Article  Google Scholar 

  • Neralla, S., Weaver, R. W., Lesikar, B. J., & Persyn, R. A. (2000). Improvement of domestic wastewater quality by subsurface flow constructed wetlands. Bioresource Technology, 75, 19–25.

    Article  CAS  Google Scholar 

  • Oswald, W. J., Gotaas, H. B., & Golueke, C. G. (1957). Algae in wastewater treatment. Sewage and Industrial Wastes, 29, 437–455.

    Google Scholar 

  • Phillips, V. R., Scholtens, R., Lee, D. S., Garland, J. A., & Sneath, R. W. (2000). A review of methods for measuring emission rates of ammonia from livestock buildings and slurry or manure stores. Part 1: assessment of basic approaches. Journal of Agricultural Engineering Research, 77, 355–364.

    Article  Google Scholar 

  • Plaza, C. (2002). Aprovechamiento agrícola del purín de cerdo en agroecosistemas semiáridos: efectos sobre suelos y plantas. Tesis Doctoral. Universidad Autónoma de Madrid.

  • Plaza, C., Hernández, D., García-Gil, J., & Polo, A. (2004). Microbial activity in pig slurry-amended soils under semiarid conditions. Soil Biology and Biochemistry, 36, 1577–1585.

    Article  CAS  Google Scholar 

  • Potter, C. L. & Karathanasis, A. D. (2001). Vegetation effects on the performance of constructed wetlands treating domestic wastewater. Proceedings of Ninth National Symposium on Individual and Small Community Sewage Systems, ASAE, Fort Worth, TX, March 2001, pp. 663–673.

  • Puigagut, J., Vilaseñor, J., Salas, J. J., Béceras, E., & García, J. (2007). Subsurface flow constructed wetlands in Spain for the sanitation of small communities: a comparative study. Ecological Engineering, 30, 312–9.

    Article  Google Scholar 

  • Reddy, K. R., & Patrick, W. H. (1984). Nitrogen transformations and loss in flooded soils and sediments. Critical Review in Environmental Control, 13, 273–309.

    Article  CAS  Google Scholar 

  • Reddy, K. R., Patrick, W. H., & Lindau, C. W. (1989). Nitrification–denitrification at the plant root-sediment interface in wetlands. Limnology and Oceanography, 34, 1004–1013.

    Article  CAS  Google Scholar 

  • Reimann, W., & Potsdam, M. S. (1991). Fest-flussig-trennung anaerob behandelter gulle. Landtechnik, 46, 11–91.

    Google Scholar 

  • Ros, M., García, C., & Hernández, T. (2006). A full-scale study of treatment of pig slurry by composting: kinetic changes in chemical and microbial properties. Waste Management, 26, 1108–1118.

    Article  CAS  Google Scholar 

  • Rufete, B., Pérez-Murcia, M. D., Pérez-Espinosa, A., Moral, R., Moreno-Caselles, J., & Paredes, C. (2006). Total and faecal coliform bacteria persistence in a pig slurry amended soil. Livestock Science, 102, 211–215.

    Article  Google Scholar 

  • Sánchez, M., & González, J. L. (2005). The fertilizer value of pig slurry. I. Values depending on the type of operation. Bioresource Technology, 96, 1117–1123.

    Article  Google Scholar 

  • Scholz, M. (2006). Wetland systems to control urban runoff. Amsterdam: Elsevier.

    Google Scholar 

  • Sheoran, A. S., & Sheoran, V. (2006). Heavy metal removal mechanism of acid mine drainage in wetlands: a critical review. Minerals Engineering, 19(2), 105–116.

    Article  CAS  Google Scholar 

  • Sorensen, P., & Thomsen, I. K. (2005). Separation of pig slurry and plant utilization and loss of nitrogen-15-labeled slurry nitrogen. Soil Science Society of America Journal, 69, 1644–1651.

    Article  Google Scholar 

  • Steer, D., Fraser, D. L., Boddy, J., & Seibert, B. (2002). Efficiency of small constructed wetlands for subsurface treatment of single-family domestic effluent. Ecological Engineering, 18, 429–440.

    Article  Google Scholar 

  • Suresh, A., Choi, H. L., Ohb, D. I., & Moon, O. K. (2009). Prediction of the nutrients value and biochemical characteristics of swine slurry by measurement of EC—electrical conductivity. Bioresource Technology, 100, 4683–4689.

    Article  CAS  Google Scholar 

  • Tofant, A., Vucˇemilo, M., Pavicˇic´, Z., & Milic´, D. (2006). The hydrogen peroxide, as a potentially useful slurry disinfectant. Livestock Science, 102, 243–247.

    Article  Google Scholar 

  • Vymazal, J. (2002). The use of sub-surface constructed wetlands for wastewater treatment in the Czech Republic: 10 years experience. Ecological Engineering, 18, 633–646.

    Article  Google Scholar 

  • Vymazal, J. (2011). Plants used in constructed wetlands with horizontal subsurface flow: a review. Hydrobiology, 674(1), 133–156.

    Article  CAS  Google Scholar 

  • Vymazal, J., Brix, H., Cooper, P. F., Haberl, R., Perfler, R., Laber, J. (1998). Removal mechanisms and types of constructed wetlands. In: constructed wetlands for waste-water treatment in Europe. Vymazal, J., Brix, H., Cooper, P., Green, M. B., Haberl, R. (Eds.), Leiden, pp 17–66.

  • Walker, P. M., Wade, C. A., & Kelley, T. R. (2010). Evaluation of a polyacrylamide assisted solid/liquid separation system for the treatment of liquid pig manure. Biosystems Engineering, 105, 241–246.

    Article  Google Scholar 

  • Werblan, D., Smith, R. J., Van der Valk, A. G., Davis, C. B. (1978). Treatment of waste from a confined hog feeding unit by using artificial marshes. In: Mickim, H. L., (Ed.), Proceedings of international symposium on land treatment of wastewater. Hannover, New Hampshire, USA, pp. 1–13.

  • Willers, H. C., Derikx, P. J. L., ten Have, P. J. W., & Vijn, T. K. (1998). Nitrification limitation in animal slurries at high temperatures. Bioresource Technology, 64, 47–54.

    Article  CAS  Google Scholar 

  • Wong, J. W. C., & Selvam, A. (2009). Reduction of indicator and pathogenic microorganisms in pig manure through fly ash and lime addition during alkaline stabilization. Journal of Hazardous Materials, 169, 882–889.

    Article  CAS  Google Scholar 

  • Zhang, R. H., & Westerman, P. W. (1997). Solid-liquid separation of animal manure for odor control and nutrient management. Applied Engineering in Agriculture, 13, 657–664.

    Article  Google Scholar 

  • Zimno, O. R., van der Steen, N. P., & Gijzen, H. J. (2003). Comparison of ammonia volatilisation rates in algae and duckweed-based waste stabilisation ponds treating domestic wastewater. Water Research, 37, 4587–4594.

    Article  Google Scholar 

Download references

Acknowledgments

This research was possible thanks to the financial support from the Spanish Ministry of Education and Science, Projects PET2006 - 0075 and CTM 2007-65888, and the Department of Agriculture and Water, Government of Murcia Region.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Muñoz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caballero-Lajarín, A., Zornoza, R., Faz, A. et al. Combination of Low-Cost Technologies for Pig Slurry Purification Under Semiarid Mediterranean Conditions. Water Air Soil Pollut 226, 341 (2015). https://doi.org/10.1007/s11270-015-2606-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-015-2606-0

Keywords

Navigation