Skip to main content

Advertisement

Log in

Seasonal and Diurnal Dynamics of Atmospheric Radon, Carbon Dioxide, Methane, δ13C-CO2 and δ13C-CH4 in a Proposed Australian Coal Seam Gas Field

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The expected growth of the coal seam gas industry in Australia requires baseline information for determining any potential long-term impacts of the industry. As such, a 1-year atmospheric time series measuring radon (222Rn), methane (CH4), carbon dioxide (CO2), δ13C-CO2 and δ13C-CH4 was conducted in an area where coal seam gas (CSG; also referred to as coal bed methane) extraction is proposed (Casino, New South Wales, Australia). We hypothesise that 222Rn can be used as a tracer of soil-atmosphere CH4 and CO2 exchange, and that carbon stable isotope values of atmospheric CH4 and CO2 can be used to identify the source of greenhouse gases. Radon, CO2 and CH4 followed a diurnal pattern related to increased concentrations during the formation of a nighttime inversion layer. The study found a significant inverse linear relationship between 222Rn concentrations and both rainfall (r 2 = 0.43, p < 0.01) and temperature (r 2 = 0.13, p < 0.01), while atmospheric pressure, wind speed and wind direction affected concentrations to a lesser degree over seasonal time scales. 222Rn had a significant, but weak positive correlation with both seasonal CO2 (r 2 = 0.15, p < 0.01) and CH4 (r 2 = 0.11, p < 0.01) concentrations. The uncoupling between 222Rn and CO2 and CH4 was likely due to biogenic sources and sinks of CO2 and CH4. δ13C values of CO2 and CH4 indicated variability in the source and sinks of the gases that seems to be linked to different seasonal, soil and spatial sources. This study provides baseline data from a proposed coal seam gas field from which future comparisons can be made.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Atkins, M.L., Santos, I.R., & Maher, D.T. (2015). Groundwater methane in a potential coal seam gas extraction region. Journal of Hydrology: Regional Studies, 4, 452–471.

  • Boon, P. I., & Mitchell, A. (1995). Methanogenesis in the sediments of an Australian freshwater wetland: comparison with aerobic decay, and factors controlling methanogenesis. FEMS Microbiology Ecology, 18, 175–190.

    Article  CAS  Google Scholar 

  • Boon, P. I., Mitchell, A., & Lee, K. (1997). Effects of wetting and drying on methane emissions from ephemeral floodplain wetlands in south-eastern Australia. Hydrobiologia, 357, 73–87.

    Article  CAS  Google Scholar 

  • Chanton, J., Chaser, L., Glasser, P., & Siegel, D. (2004). Carbon and hydrogen isotopic effects in microbial methane from terrestrial environments. Stable isotopes and biosphere-atmosphere interactions, physiological ecology series (pp. 85–105).

    Google Scholar 

  • Cicerone, R. J., & Oremland, R. S. (1988). Biogeochemical aspects of atmospheric methane. Global Biogeochemical Cycles, 2, 299–327.

    Article  CAS  Google Scholar 

  • Doig, A., Stanmore, P., & Mares, T. (2012). The Clarence-Moreton Basin in New South Wales; geology, stratigraphy and coal seam gas characteristics, Eastern Australasian Basins Symposium IV, pp. 1Ā14. Perth WA: Petroleum Exploration Society of Australia, Special Publication.

    Google Scholar 

  • Duenas, C., Perez, M., Fernandez, M., & Carretero, J. (1996). Radon concentrations in surface air and vertical atmospheric stability of the lower atmosphere. Journal of Environmental Radioactivity, 31, 87–102.

    Article  CAS  Google Scholar 

  • Evrendilek, F., Denizli, H., Yetis, H., & Karakaya, N. (2013). Monitoring spatiotemporal variations of diel radon concentrations in peatland and forest ecosystems based on neural network and regression models. Environmental Monitoring and Assessment, 185, 5577–5583.

    Article  CAS  Google Scholar 

  • Fujiyoshi, R., Sakamoto, K., Imanishi, T., Sumiyoshi, T., Sawamura, S., Vaupotic, J., & Kobal, I. (2006). Meteorological parameters contributing to variability in 222Rn activity concentrations in soil gas at a site in Sapporo, Japan. Science of the Total Environment, 370, 224–234.

    Article  CAS  Google Scholar 

  • Gatland, J., Santos, I., Maher, D., Duncan, T., & Erler, D. (2014). Carbon dioxide and methane emissions from an artificially drained coastal wetland during a flood: Implications for wetland global warming potential. Journal of Geophysical Research: Biogeosciences, 119, 1698–1716.

    CAS  Google Scholar 

  • Griffiths, A., Zahorowski, W., Element, A., & Werczynski, S. (2010). A map of radon flux at the Australian land surface. Atmospheric Chemistry and Physics, 10, 8969–8982.

    Article  CAS  Google Scholar 

  • IPCC. (2013). The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change 2013. Cambridge, U. K: Cambridge Univ. Press.

    Google Scholar 

  • Iskandar, D., Yamazawa, H., & Iida, T. (2004). Quantification of the dependency of radon emanation power on soil temperature. Applied Radiation and Isotopes, 60, 971–973.

    Article  CAS  Google Scholar 

  • Jacob, D. J., Prather, M. J., Rasch, P. J., Shia, R. L., Balkanski, Y. J., Beagley, S. R., Bergmann, D. J., Blackshear, W., Brown, M., & Chiba, M. (1997). Evaluation and intercomparison of global atmospheric transport models using 222Rn and other short‐lived tracers. Journal of Geophysical Research: Atmospheres, 102(1984–2012), 5953–5970.

    Article  CAS  Google Scholar 

  • Le Mer, J., & Roger, P. (2001). Production, oxidation, emission and consumption of methane by soils: a review. European Journal of Soil Biology, 37, 25–50.

    Article  Google Scholar 

  • Loh, Z., Leuning, R., Zegelin, S., Etheridge, D., Bai, M., Naylor, T., & Griffith, D. (2009). Testing Lagrangian atmospheric dispersion modelling to monitor CO2 and CH4 leakage from geosequestration. Atmospheric Environment, 43, 2602–2611.

    Article  CAS  Google Scholar 

  • Maher, D. T., Santos, I. R., & Tait, D. R. (2014). Mapping methane and carbon dioxide concentrations and δ13C values in the atmosphere of two Australian coal seam gas fields. Water, Air, & Soil Pollution, 225, 1–9.

    Article  CAS  Google Scholar 

  • Martin, P., Tims, S., Ryan, B., & Bollhöfer, A. (2004). A radon and meteorological measurement network for the Alligator Rivers Region, Australia. Journal of Environmental Radioactivity, 76, 35–49.

    Article  CAS  Google Scholar 

  • Miller, J. B., & Tans, P. P. (2003). Calculating isotopic fractionation from atmospheric measurements at various scales. Tellus B, 55, 207–214.

    Article  Google Scholar 

  • Moore, C. W., Zielinska, B., Pétron, G., & Jackson, R. B. (2014). Air impacts of increased natural gas acquisition, processing, and use: a critical review. Environmental Science & Technology, 48(15), 8349–59.

    Article  CAS  Google Scholar 

  • Morand, D. (1994). Soil landscapes of the Lismore-Ballina 1: 100 000 sheet: Mullumbimby, Byron Bay, Casino, Kyogle.

    Google Scholar 

  • Neubauer, S., & Megonigal, J.P. (2015). Moving beyond global warming potentials to quantify the climatic role of ecosystems. Ecosystems, 18, 1000–1013.

  • NSW Government. (2013). NSW Chief Scientist and Engineer, Initial report on the Independent Review of Coal Seam Gas Activities in NSW. www.chiefscientist.nsw.gov.au/coal-seam-gas-review.

    Google Scholar 

  • O'Leary, M. H. (1988). Carbon isotopes in photosynthesis. Bioscience, 0, 328–336.

    Article  Google Scholar 

  • Packham, G. H. (1969). The geology of New South Wales. Sydney, Australia: Geological Society of Australia.

  • Packham, G. H., & Day, A. (1969). I The general features of the geological provinces of New South Wales. Journal of the Geological Society of Australia, 16, 1–17.

    Article  Google Scholar 

  • Papachristodoulou, C., Ioannides, K., & Spathis, S. (2007). The effect of moisture content on radon diffusion through soil: assessment in laboratory and field experiments. Health Physics, 92, 257–264.

    Article  CAS  Google Scholar 

  • Porstendorfer, J., Butterweck, G., & Reineking, A. (1994). Daily variation of the radon concentration indoors and outdoors and the influence of meteorological parameters. Health Physics, 67, 283–287.

    Article  CAS  Google Scholar 

  • Rogers, V., & Nielson, K. (1991). Multiphase radon generation and transport in porous materials. Health Physics, 60, 807–815.

    Article  CAS  Google Scholar 

  • Roslev, P., & King, G. M. (1995). Aerobic and anaerobic starvation metabolism in methanotrophic bacteria. Applied and Environmental Microbiology, 61, 1563–1570.

    CAS  Google Scholar 

  • Rust, F. (1981). Ruminant methane delta (13C/12C) values: relation to atmospheric methane. Science, 211, 1044–1046.

    Article  CAS  Google Scholar 

  • Schery, S., & Wasiolek, M. (1998). Modeling radon flux from the earth’s surface, Radon and Thoron in the human environment (pp. 207–217). Singapore: World Scientific Publishing.

    Google Scholar 

  • Schmidt, M., Graul, R., Sartorius, H., & Levin, I. (1996). Carbon dioxide and methane in continental Europe: a climatology, and 222Radon‐based emission estimates. Tellus B, 48, 457–473.

    Article  Google Scholar 

  • Schumann, R. R., Owen, D. E., & Asher-Bolinder, S. (1992). Effects of weather and soil characteristics on temporal variations in soil-gas radon concentrations. Geological Society of America Special Papers, 271, 65–72.

    Article  Google Scholar 

  • Sundal, A. V., Valen, V., Soldal, O., & Strand, T. (2008). The influence of meteorological parameters on soil radon levels in permeable glacial sediments. Science of the Total Environment, 389, 418–428.

    Article  CAS  Google Scholar 

  • Szabó, K. Z., Jordan, G., Horváth, Á., & Szabó, C. (2013). Dynamics of soil gas radon concentration in a highly permeable soil based on a long-term high temporal resolution observation series. Journal of Environmental Radioactivity, 124, 74–83.

    Article  Google Scholar 

  • Tait, D. R., Santos, I., Maher, D. T., Cyronak, T. J., & Davis, R. J. (2013). Enrichment of radon and carbon dioxide in the open atmosphere of an Australian coal seam gas field. Environmental Science & Technology, 47, 3099–3104.

    Article  CAS  Google Scholar 

  • Tchorz-Trzeciakiewicz, D., & Solecki, A. (2011). Seasonal variation of radon concentrations in atmospheric air in the Nowa Ruda area (Sudety Mountains) of southwest Poland. Geochemical Journal, 45, 455–461.

    Article  CAS  Google Scholar 

  • Thom, M., Bösinger, R., Schmidt, M., & Levin, I. (1993). The regional budget of atmospheric methane of a highly populated area. Chemosphere, 26, 143–160.

    Article  CAS  Google Scholar 

  • Townsend‐Small, A., Tyler, S. C., Pataki, D. E., Xu, X., & Christensen, L. E. (2012). Isotopic measurements of atmospheric methane in Los Angeles, California, USA: influence of “fugitive” fossil fuel emissions. Journal of Geophysical Research: Atmospheres, 1984–2012, 117.

    Google Scholar 

  • Ussler, W., Chanton, J. P., Kelley, C. A., & Martens, C. S. (1994). Radon 222 tracing of soil and forest canopy trace gas exchange in an open canopy boreal forest. Journal of Geophysical Research: Atmospheres, 99(1984–2012), 1953–1963.

    Article  CAS  Google Scholar 

  • Van Der Laan, S., Karstens, U., Neubert, R., VAN DER LAAN‐LUIJKX, I., & Meijer, H. (2010). Observation-based estimates of fossil fuel-derived CO2 emissions in the Netherlands using Δ14C, CO and 222Radon. Tellus B, 62, 389–402.

    Article  Google Scholar 

  • Wang, F., & Bettany, J. (1995). SHORT COMMUNICATION: Methane emission from a usually well-drained prairie soil after snowmelt and precipitation. Canadian Journal of Soil Science, 75, 239–241.

    Article  CAS  Google Scholar 

  • Warner, N. R., Jackson, R. B., Darrah, T. H., Osborn, S. G., Down, A., Zhao, K., White, A., & Vengosh, A. (2012). Geochemical evidence for possible natural migration of Marcellus Formation brine to shallow aquifers in Pennsylvania. Proceedings of the National Academy of Sciences, 109, 11961–11966.

    Article  CAS  Google Scholar 

  • Whiticar, M. J., & Faber, E. (1986). Methane oxidation in sediment and water column environments—isotope evidence. Organic Geochemistry, 10, 759–768.

    Article  CAS  Google Scholar 

  • Whiticar, M. J., Faber, E., & Schoell, M. (1986). Biogenic methane formation in marine and freshwater environments: CO 2 reduction vs. acetate fermentation—isotope evidence. Geochimica et Cosmochimica Acta, 50, 693–709.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank the landowner for allowing us to deploy the monitoring station on their property. The analytical instrumentation was funded by ARC grants (LE120100156 and DP120101645) and the Hermon Slade Foundation. Thanks to Richard Boulton, Rachael Davis and John Revington for their efforts in deploying the station and collecting data. DTM and IRS are supported through Australian Research Council DECRA Fellowships (DE140101733 and DE150100581). Field investigations were partially supported by a Northern Rivers Regional Organisation of Councils (NOROC).

Compliance with Ethical Standards

The study design, sampling, data analysis and manuscript compilation was conducted by personnel not directly related to any funding sponsor and have no conflict of interest. No human participants and/or animals were studied.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas R. Tait.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tait, D.R., Maher, D.T. & Santos, I.R. Seasonal and Diurnal Dynamics of Atmospheric Radon, Carbon Dioxide, Methane, δ13C-CO2 and δ13C-CH4 in a Proposed Australian Coal Seam Gas Field. Water Air Soil Pollut 226, 350 (2015). https://doi.org/10.1007/s11270-015-2597-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-015-2597-x

Keywords

Navigation