Skip to main content
Log in

Effect of Combined Microwave-Ultrasonic Pretreatment of Real Mixed Sludge on the Enhancement of Anaerobic Digester Performance

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The anaerobic biodegradability of combined microwave-ultrasonic pretreated thickened excess activated sludge (PTEAS) mixed with raw primary sludge (PS) was investigated in this study. The pretreatment resulted in the enhancement of mesophilic anaerobic digester performance which in turn improved biogas production capacity and quality, total and volatile solid reduction, dewaterability, protein solubilisation and significant reduction of pathogens to produce class A biosolid. This study presented the results of two continuously stirred mesophilic anaerobic digesters charged with various proportions of a mixture of PTEAS and PS similar to the large-scale industrial practice. Digester 1 was charged with 75 % PTEAS and 25 % PS, while digester 2 was fed with 25 % PTEAS and 75 % PS. The methane production was 122 mL CH4/g total chemical oxygen demand for digester 2 after 20 days of anaerobic digestion. This amount further increased for both digesters with digestion time. The biogas quality in terms of methane to carbondioxide ratio (CH4/CO2) was significantly improved for digester 1 compared with digester 2 after 20 days of digestion. Volatile solid reduction of 76 and 57 % was achieved for digester 1 and digester 2 respectively after the same 20 days of digestion. The CH4/CO2 ratio reached 2.2:1 and 1.1:1 after 20 days of digestion for digester 1 and digester 2, respectively. Higher percentage of PTEAS increases the digestion kinetics, the methane production capacity and the biogas quality. Furthermore, total coliform reduction of 84 and 44 % was achieved for digester 1 and digester 2 respectively after 22 days of digestion. Hydrolysis rate and biochemical methane production were improved for both digesters based on the results of Gompertz kinetic model and the hydrolysis rate constants as determined by model fitting of the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • APHA, AWWA and WEF. (2000). Standard methods for the examination of water and wastewater (21st ed.). Washington DC: American Public Health Association, American Water Works Association and Water Environment Federation.

    Google Scholar 

  • Appels, L., Baeyens, J., Degreve, J., & Dewil, R. (2008). Principles and potential of the anaerobic digestion of waste-activated sludge. Progress in Energy and Combustion Science, 34(6), 755–781.

    Article  CAS  Google Scholar 

  • Apul, O. G., & Sanin, F. D. (2010). Ultrasonic pretreatment and subsequent anaerobic digestion under different operational conditions. Bioresource Technology, 101, 8984–8992.

    Article  CAS  Google Scholar 

  • Bougrier, C., Carrère, H., & Delgenès, J. P. (2005). Solubilisation of waste-activated sludge by ultrasonic treatment. Chemical Engineering Journal, 106(2), 163–169. doi:10.1016/j.cej.2004.11.013.

    Article  CAS  Google Scholar 

  • Carrère, H., Dumas, C., Battimelli, A., Batstone, D. J., Delgenès, J. P., Steyer, J. P., et al. (2010). Pretreatment methods to improve sludge anaerobic degradability: a review. Journal of Hazardous Materials, 183(1–3), 1–15. doi:10.1016/j.jhazmat.2010.06.129.

    Article  Google Scholar 

  • Chong, S., Sen, T. K., Kayaalp, A., & Ang, H. M. (2012). The performance enhancements of upflow anaerobic sludge blanket (UASB) reactors for domestic sludge treatment–a state-of-the-art review. Water Research, 46(11), 3434–3470. doi:10.1016/j.watres.2012.03.066.

    Article  CAS  Google Scholar 

  • Eskicioglu, C., Kennedy, K. J., & Droste, R. L. (2007a). Enhancement of batch waste activated sludge digestion by microwave pretreatment. Water Environment Research, 79(11), 2304–2317.

    Article  CAS  Google Scholar 

  • Eskicioglu, C., Terzian, N., Kennedy, K. J., Droste, R. L., & Hamoda, M. (2007b). Athermal microwave effects for enhancing digestibility of waste activated sludge. Water Research, 41(11), 2457–2466.

    Article  CAS  Google Scholar 

  • Farooq, R., Rehman, F., Baig, S., Sadique, M., Khan, S., & Farooq, U. (2009). The effect of ultrasonic irradiation on the anaerobic digestion of activated sludge. World Applied Sciences Journal, 6(2), 234–237.

    CAS  Google Scholar 

  • Gadhamshetty, V., Arudchelvam, Y., Nirmalakhandan, N., & Johnson, D. C. (2010). Modeling dark fermentation for biohydrogen production: ADM1-based model vs. Gompertz model. International Journal of Hydrogen Energy, 35(2), 479–490. doi:10.1016/j.ijhydene.2009.11.007.

    Article  CAS  Google Scholar 

  • Ghosh, S., Conrad, J., & Klass, D. (1975). Anaerobic acidogenesis of wastewater sludge. Journal Water Pollution Control Federation, 47(1), 30–45.

    CAS  Google Scholar 

  • Grönroos, A., Kyllönen, H., Korpijärvi, K., Pirkonen, P., Paavola, T., & Jokela, J. (2005). Ultrasound assisted method to increase soluble chemical oxygen demand (SCOD) of sewage sludge for digestion. Ultrasonics Sonochemistry, 12(1–2), 115–120. doi:10.1016/j.ultsonch.2004.05.012.

    Article  Google Scholar 

  • Haug, R., Stuckey, D., Gossett, J., & McCarty, P. (1978). Effect of thermal pretreatment on digestibility and dewaterability of organic sludges. Journal Water Pollution Control Federation, 50(1), 73–85.

    CAS  Google Scholar 

  • Lafitte-Trouqué, S., & Forster, C. F. (2002). The use of ultrasound and γ-irradiation as pre-treatments for the anaerobic digestion of waste activated sludge at mesophilic and thermophilic temperatures. Bioresource Technology, 84(2), 113–118. doi:10.1016/S0960-8524(02)00038-X.

    Article  Google Scholar 

  • Lee, I.-S., Parameswaran, P., & Rittmann, B. E. (2011). Effects of solids retention time on methanogenesis in anaerobic digestion of thickened mixed sludge. Bioresource Technology, 102(22), 10266–10272. doi:10.1016/j.biortech.2011.08.079.

    Article  CAS  Google Scholar 

  • Lin, C.-Y., & Lee, Y.-S. (2002). Effect of thermal and chemical pretreatments on anaerobic ammonium removal in treating septage using the UASB system. Bioresource Technology, 83(3), 259–261. doi:10.1016/S0960-8524(01)00223-1.

    Article  CAS  Google Scholar 

  • Müller, J. (2001). Prospects and problems of sludge pre-treatment processes. Water Science and Technology: a Journal of the International Association on Water Pollution Research, 44(10), 121.

    Google Scholar 

  • Navaratnam (2007). Anaerobic digestion of waste activated sludge with ultrasonic pretreatment. Master of engineering in environmental engineering and management, Asian Institute of Technology, Thailand.

  • Park, W. J. (2011). Effects of microwave pretreatment on mesophilic anaerobic digestion for mixture of primary and secondary sludges compared with thermal pretreatment. Environmental Engineering Research, 16(2), 103–109.

    Article  Google Scholar 

  • Park, W. J., & Ahn, J.-H. (2011). Effects of microwave pretreatment on mesophilic anaerobic digestion for mixture of primary and secondary sludges compared with thermal pretreatment. Environmental Engineering Research (EER), 16(2), 103–109.

    Article  Google Scholar 

  • Penaud, V., Delgenes, J., & Moletta, R. (2000). Influence of thermo-chemical pre-treatment conditions on solubilization and anaerobic biodegradability of a microbial biomass. Environmental Technology, 21, 87–96.

    Article  CAS  Google Scholar 

  • Portenlanger, G. (1999). Mechanical and radical effects of ultrasound. Ultrasound in Environmental Engineering, TU Hamburg-Harburg Reports on Sanitary Engineering, 25, 139–151.

    Google Scholar 

  • Rolfe, R. D., Hentges, D. J., Campbell, B. J., & Barrett, J. T. (1978). Factors related to the oxygen tolerance of anaerobic bacteria. Applied and Environmental Microbiology, 36(2), 306–313.

    CAS  Google Scholar 

  • Saha, M., Eskicioglu, C., & Marin, J. (2011). Microwave, ultrasonic and chemo-mechanical pretreatments for enhancing methane potential of pulp mill wastewater treatment sludge. Bioresource Technology, 102(17), 7815–7826. doi:10.1016/j.biortech.2011.06.053.

    Article  CAS  Google Scholar 

  • Saifuddin, N., & Fazlili, S. A. (2009). Effect of microwave and ultrasonic pretreatments on biogas production from anaerobic digestion of palm oil mill effluent. American Journal of Engineering and Applied Sciences, 2, 139–146.

    Article  Google Scholar 

  • Shao, L., Wang, T., Li, T., Lü, F., & He, P. (2013). Comparison of sludge digestion under aerobic and anaerobic conditions with a focus on the degradation of proteins at mesophilic temperature. Bioresource Technology, 140, 131–137. doi:10.1016/j.biortech.2013.04.081.

    Article  CAS  Google Scholar 

  • Stuckey, D., & McCarty, P. (1978). Thermo-chemical pre-treatment of nitrogeneous to increase methane yield. Biotech Eng, 8, 219–233.

  • Tanaka, S., & Kamiyama, K. (2002). Thermo-chemical pre-treatment in the anaerobic digestion of waste activated sludge. Water Science and Technology, 46, 173–179.

    CAS  Google Scholar 

  • Tiehm, A., Nickel, K., & Neis, U. (1997). The use of ultrasound to accelerate the anaerobic digestion of sewage sludge. Water Science and technology, 36(11), 121–128.

  • Tiehm, A., Nickel, K., Zellhorn, M., & Neis, U. (2001). Ultrasonic waste activated sludge disintegration for improving anaerobic stabilization. Water Research, 35(8), 2003–2009.

    Article  CAS  Google Scholar 

  • Toreci, I., Kennedy, K. J., & Droste, R. L. (2010). Effect of high-temperature microwave irradiation on municipal thickened waste activated sludge solubilization. Heat Transfer Engineering, 31(9), 766–773.

    Article  CAS  Google Scholar 

  • Weiland, P. (2010). Biogas production: current state and perspectives. Applied Microbiology and Biotechnology, 85(4), 849–860.

    Article  CAS  Google Scholar 

  • Yeneneh, A. M., Chong, S., Sen, T. K., Ang, H. M., & Kayaalp, A. (2013a). Effect of ultrasonic, microwave and combined microwave–ultrasonic pretreatment of municipal sludge on anaerobic digester performance. Water, Air, & Soil Pollution, 224(5), 1–9.

    Article  CAS  Google Scholar 

  • Yeneneh, A. M., Sen, T. K., Chong, S., Ang, H. M., & Kayaalp, A. (2013b). Effect of combined microwave-ultrasonic pretreatment on anaerobic biodegradability of primary, excess activated and mixed sludge. Computational water, Energy and Envrionmental Engineering, 2(Number 3B), 7–11. doi:10.4236/cweee.2013.23B002.

    Article  Google Scholar 

  • Yeom, I. T., Lee, K. R., Lee, Y. H., Ahn, K. H., & Lee, S. H. (2002). Effects of ozone treatment on the biodegradability of sludge from municipal wastewater treatment plants. Water Science and Technology, 46(4–5), 421–425.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Water Corporation, Perth WA and Chemical Engineering department of Curtin University, Perth for proving funding and laboratory space for this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tushar Kanti Sen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yeneneh, A.M., Kayaalp, A., Sen, T.K. et al. Effect of Combined Microwave-Ultrasonic Pretreatment of Real Mixed Sludge on the Enhancement of Anaerobic Digester Performance. Water Air Soil Pollut 226, 314 (2015). https://doi.org/10.1007/s11270-015-2586-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-015-2586-0

Keywords

Navigation