Skip to main content
Log in

Effects of Anaerobic Digestion and Solids Separation on Ammonia Emissions from Stored and Land Applied Dairy Manure

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Field and laboratory studies were conducted to evaluate the effects of anaerobic digestion (AD) and solids-liquid separation on emissions during subsequent storage and land application. The lab storage tests were conducted for 21 days with manure samples obtained at the following four points in a full-scale AD system: raw manure (RM) delivery, raw manure supplemented with other substrates (AD influent), AD effluent, and AD effluent after solids-liquid separation (AD liquid effluent). Ammonia fluxes from stored AD effluent declined from 3.95 to 2.02 g m−2 day−1. Lower NH3 fluxes, however, were observed from AD liquid effluent (1.1 g m−2 day−1) and AD influent (0.25 g m−2 day−1). Ammonia emissions from full-scale manure storages were similar to those obtained in the lab. Results also indicated significantly lower volatile fatty acid (VFA) in AD effluent and AD liquid effluent compared with that from the AD influent, indicating significant reduction in odor generation potential due to AD and solids-liquid separation processes. Two manure application methods (surface application and manure injection) for both non-AD and AD manures were simulated in the lab and studied for 9 days. Surface-applied non-AD manure exhibited the highest NH3 flux (0.78 g m−2 day−1), while injected AD manure led to the lowest NH3 flux (0.17 g m−2 day−1). Similar NH3 emissions results were observed from the field studies. Overall, while AD of dairy manure resulted in significant increases in NH3 emissions from stored effluent, the AD process significantly reduced NH3 emissions following application of AD manure on land.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CAFO:

Concentrated animal feeding operation

AD manure:

Anaerobic digestion (AD), anaerobically digested manure

Non-AD manure:

Non-anaerobically digested manure

TS:

Total solids

VS:

Volatile solids

TAN:

Total ammoniacal nitrogen

VFA:

Volatile fatty acids

References

  • Amon, B., Kryvoruchko, V., Amon, T., & Zechmeister-Boltenstern, S. (2006). Methane, nitrous oxide and ammonia emissions during storage and after application of dairy cattle slurry and influence of slurry treatment. Agriculture, Ecosystems and Environment, 112(2), 153–162.

    Article  CAS  Google Scholar 

  • APHA. (1998). Standard methods for the examination of water and wastewater (20th ed.). Washington, DC: APHA, AWWA, WEF.

    Google Scholar 

  • Asman, W. A., Sutton, M. A., & Schjørring, J. K. (1998). Ammonia: emission, atmospheric transport and deposition. New Phytologist, 139(1), 27–48.

    Article  CAS  Google Scholar 

  • Bajwa, K. S., Aneja, V. P., & Arya, S. P. (2006). Measurement and estimation of ammonia emissions from lagoon–atmosphere interface using a coupled mass transfer and chemical reactions model, and an equilibrium model. Atmospheric Environment, 40, 275–286.

    Article  Google Scholar 

  • Blanes-Vidal, V., Sommer, S. G., & Nadimi, E. S. (2009). Modelling surface pH and emissions of hydrogen sulphide, ammonia, acetic acid and carbon dioxide from a pig waste lagoon. Biosystems Engineering, 104(4), 510–521.

    Article  Google Scholar 

  • Bless, H. G., Beinhauer, R., & Sattelmacher, B. (1991). Ammonia emission from slurry applied to wheat stubble and rape in North Germany. The Journal of Agricultural Science, 117(02), 225–231.

    Article  Google Scholar 

  • Chadwick, D., Sommer, S., Thorman, R., Fangueiro, D., Cardenas, L., Amon, B., et al. (2011). Manure management: implications for greenhouse gas emissions. Animal Feed Science and Technology, 166, 514–531.

    Article  Google Scholar 

  • Company, H. (2004). Esterification Method 8196 (In DR/2400 spectrophotometer procedure manual). Loveland, USA: Hach Company.

    Google Scholar 

  • El-Mashad, H. M., Zhang, R., Arteaga, V., Rumsey, T., & Mitloehner, F. M. (2011). Volatile fatty acids and alcohols production during anaerobic storage of dairy manure. Transactions of the ASABE, 54(2), 599–607.

    Article  Google Scholar 

  • Fangmeier, A., Hadwiger-Fangmeier, A., Van der Eerden, L., & Jäger, H. J. (1994). Effects of atmospheric ammonia on vegetation—a review. Environmental Pollution, 86(1), 43–82.

    Article  CAS  Google Scholar 

  • Faulkner, W. B., & Shaw, B. W. (2008). Review of ammonia emission factors for United States animal agriculture. Atmospheric Environment, 42(27), 6567–6574.

    Article  CAS  Google Scholar 

  • Flessa, H., & Beese, F. (2000). Laboratory estimates of trace gas emissions following surface application and injection of cattle slurry. Journal of Environmental Quality, 29(1), 262–268.

    Article  CAS  Google Scholar 

  • Frear, C., Liao, W., Ewing, T., & Chen, S. (2011). Evaluation of co‐digestion at a commercial dairy anaerobic digester. CLEAN–Soil, Air. Water, 39(7), 697–704.

    CAS  Google Scholar 

  • Huijsmans, J. F. M., Hol, J. M. G., & Vermeulen, G. D. (2003). Effect of application method, manure characteristics, weather and field conditions on ammonia volatilization from manure applied to arable land. Atmospheric Environment, 37(26), 3669–3680.

    Article  CAS  Google Scholar 

  • Immovilli, A., Fabbri, C., & Valli, L. (2008). Odour and ammonia emissions from cattle slurry treated with anaerobic digestion. Chemical Engineering Transactions, 15, 247–254.

    Google Scholar 

  • Joo, H. S., Ndegwa, P. M., Harrison, J. H., Whitefield, E., Heber, A. J., & Ni, J. Q. (2012a). Emissions of ammonia and greenhouse gases (GHG) from anaerobic digested and undigested dairy manure. Dallas: ASABE Meeting Presentation.

    Google Scholar 

  • Joo, H. S., Ndegwa, P. M., Heber, A. J., Ni, J. Q., Bogan, W. W., Ramirez-Dorronsoro, J. C., et al. (2012b). Ammonia and hydrogen sulfide emissions from naturally ventilated free-stall dairy barns. Dallas: ASABE Meeting Presentation.

    Google Scholar 

  • Karim, K., Hoffmann, R., Klasson, T., & Al-Dahhan, M. H. (2005). Anaerobic digestion of animal waste: waste strength versus impact of mixing. Bioresource Technology, 96(16), 1771–1781.

    Article  CAS  Google Scholar 

  • King, S., Schwalb, M., Giard, D., Whalen, J., & Barrington, S. (2011). Effect of ISPAD anaerobic digestion on ammonia volatilization from soil applied swine manure. Applied and Environmental Soil Science, 2012, 1–8.

    Article  Google Scholar 

  • Koirala, K., Ndegwa, P. M., Joo, H. S., Frear, C., Stockle, C. O., & Harrison, J. H. (2013). Impact of anaerobic digestion of liquid dairy manure on ammonia volatilization process. Transactions of the ASABE, 56(5), 1959–1966.

    CAS  Google Scholar 

  • Madsen, M., Holm-Nielsen, J. B., & Esbensen, K. H. (2011). Monitoring of anaerobic digestion processes: a review perspective. Renewable and Sustainable Energy Reviews, 15(6), 3141–3155.

    Article  CAS  Google Scholar 

  • McCubbin, D. R., Apelberg, B. J., Roe, S., & Divita, F. (2002). Livestock ammonia management and particulate-related health benefits. Environmental Science and Technology, 36(6), 1141–1146.

    Article  CAS  Google Scholar 

  • Misselbrook, T. H., Powell, J. M., Broderick, G. A., & Grabber, J. H. (2005). Dietary manipulation in dairy cattle: laboratory experiments to assess the influence on ammonia emissions. Journal of Dairy Science, 88(5), 1765–1777.

    Article  CAS  Google Scholar 

  • Ndegwa, P. M. (2003). Solids separation coupled with batch‐aeration treatment for odor control from liquid swine manure. Journal of Environmental Science and Health. Part. B, 38(5), 631–643.

    Article  Google Scholar 

  • Ndegwa, P. M., Vaddella, V. K., Hristov, A. N., & Joo, H. S. (2009). Measuring concentrations of ammonia in ambient air or exhaust air stream using acid traps. Journal of Environmental Quality, 38(2), 647–653.

    Article  CAS  Google Scholar 

  • Ndegwa, P. M., Zhu, J., & Luo, A. (2002). Effects of solids separation and time on the production of odorous compounds in stored pig slurry. Biosystems Engineering, 81(1), 127–133.

    Article  Google Scholar 

  • Novak, S. M., & Fiorelli, J. L. (2010). Greenhouse gases and ammonia emissions from organic mixed crop-dairy systems: a critical review of mitigation options. Agronomy for Sustainable Development, 30(2), 215–236.

    Article  CAS  Google Scholar 

  • Page, L. H., Ni, J. Q., Heber, A. J., Mosier, N. S., Liu, X., Joo, H. S., et al. (2014). Characteristics of volatile fatty acids in stored dairy manure before and after anaerobic digestion. Biosystems Engineering, 118, 16–28.

    Article  Google Scholar 

  • Page, L. H., Ni, J. Q., Zhang, H., Heber, A. J., Mosier, N. S., Liu, X., et al. (2015). Reduction of volatile fatty acids and odor offensiveness by anaerobic digestion and solid separation of dairy manure during manure storage. Journal of Environmental Management, 152, 91–98.

    Article  CAS  Google Scholar 

  • Parkin, T., Mosier, A., Smith, J., Venterea, R., Johnson, J., Reicosky, D., et al. (2003). USDA-ARS GRACEnet chamber-based trace gas flux measurement protocol. Washington DC: USDA-ARS.

    Google Scholar 

  • Pavlostathis, S. G., & Giraldo-Gomez, E. (1991). Kinetics of anaerobic treatment. Water Science and Technology, 24(8), 35–59.

    CAS  Google Scholar 

  • Powers, W. J., Van Horn, H. H., Wilkie, A. C., Wilcox, C. J., & Nordstedt, R. A. (1999). Effects of anaerobic digestion and additives to effluent or cattle feed on odor and odorant concentrations. Journal of Animal Science, 77(6), 1412–1421.

    CAS  Google Scholar 

  • Rochette, P., & Eriksen-Hamel, N. S. (2008). Chamber measurements of soil nitrous oxide flux: are absolute values reliable? Soil Science Society of America Journal, 72(2), 331–342.

    Article  CAS  Google Scholar 

  • SAS Institute. (2008). SAS user’s guide: statistics. ver. 9.2(TS2M3). Cary, N.C: SAS Institute, Inc.

    Google Scholar 

  • Smith, K., Cumby, T., Lapworth, J., Misselbrook, T., & Williams, A. (2007). Natural crusting of slurry storage as an abatement measure for ammonia emissions on dairy farms. Biosystems Engineering, 97(4), 464–471.

    Article  Google Scholar 

  • Sommer, S. G., & Husted, S. (1995). The chemical buffer system in raw and digested animal slurry. The Journal of Agricultural Science, 124(01), 45–53.

    Article  CAS  Google Scholar 

  • Sommer, S. G., & Hutchings, N. J. (2001). Ammonia emission from field applied manure and its reduction—invited paper. European Journal of Agronomy, 15(1), 1–15.

    Article  CAS  Google Scholar 

  • Sommer, S. G., Zhang, G. Q., Bannink, A., Chadwick, D., Misselbrook, T., Harrison, R., et al. (2006). Algorithms determining ammonia emission from buildings housing cattle and pigs and from manure stores. Advances in Agronomy, 89, 261–335.

    Article  Google Scholar 

  • Sun, F., Harrison, J. H., Ndegwa, P. M., & Johnson, K. (2014). Effect of manure treatment on ammonia and greenhouse gases emissions following surface application. Water, Air, and Soil Pollution, 225(4), 1–23.

    Article  Google Scholar 

  • Szogi, A. A., & Vanotti, M. B. (2007). Abatement of ammonia emissions from swine lagoons using polymer-enhanced solid–liquid separation. Applied Engineering in Agriculture, 23(6), 837–845.

    Article  Google Scholar 

  • USDA-NRCS (2014). Web soil survey. http://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx. Accessed 07.20.2015.

  • Vaddella, V. K., Ndegwa, P. M., Ullman, J. L., & Jiang, A. (2013). Mass transfer coefficients of ammonia for liquid dairy manure. Atmospheric Environment, 66, 107–113.

    Article  CAS  Google Scholar 

  • Vaddella, V. K., Ndegwa, P. M., & Joo, H. (2011). Ammonia loss from simulated post-collection storage of scraped and flushed dairy-cattle manure. Biosystems Engineering, 110(3), 291–296.

    Article  Google Scholar 

  • Visscher, A. D., Harper, L. A., Westerman, P. W., Liang, Z., Arogo, J., Sharpe, R. R., et al. (2002). Ammonia emissions from anaerobic swine lagoons: model development. Journal of Applied Meteorology, 41(4), 426–433.

    Article  Google Scholar 

  • Wood, J. D., Gordon, R. J., Wagner-Riddle, C., Dunfield, K. E., & Madani, A. (2012). Relationships between dairy slurry total solids, gas emissions, and surface crusts. Journal of Environmental Quality, 41(3), 694–704.

    Article  CAS  Google Scholar 

  • Zhang, R. H., & Westerman, P. W. (1997). Solid–liquid separation of annual manure for odor control and nutrient management. Applied Engineering in Agriculture, 13(5), 657–664.

    Article  Google Scholar 

Download references

Acknowledgments

This study was partially supported by funds from USDA-NRCS-CIG program (Grant No. 69-3A75-10-155). Other in-kind and financial support from Washington State University, Purdue University, Qualco Energy, and from the anonymous colloborating producer are also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. M. Ndegwa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neerackal, G.M., Ndegwa, P.M., Joo, H.S. et al. Effects of Anaerobic Digestion and Solids Separation on Ammonia Emissions from Stored and Land Applied Dairy Manure. Water Air Soil Pollut 226, 301 (2015). https://doi.org/10.1007/s11270-015-2561-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-015-2561-9

Keywords

Navigation