Skip to main content

Advertisement

Log in

Chemistry of Arsenic in Semi-Arid Alkaline Soils of the Southern High Plains, USA: Sorption Characteristics and Interactions with Soil Constituents

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Limited information is available on the chemistry of arsenic (As) in the semi-arid alkaline soils of the Southern High Plains (SHP), USA. This study examined As sorption characteristics and its interactions with soil constituents in important agricultural soils (Amarillo, Arvana, Patricia, and Pullman) of the SHP using sorption isotherm models and sequential fractionation techniques. Results from fractionation of As into five distinct pools showed that about 52.4 % of the added As was found in the exchangeable and non-adsorbed pool in the Amarillo soil, suggesting this soil could have the highest tendency to release sorbed As to the environment, whereas the Pullman soil exhibited the greatest capacity to fix As as over 45 % of the added As was found in the residual fraction. The distribution of As among the soil constituents was a reflection of the characteristics of these soils. Arsenic sorption behaviors were well described by both the Freundlich and Langmuir models. Arsenic sorption maxima (q max) was highest in the Amarillo soil (~2124 mg kg−1), followed by the Pullman, Arvana, and Patricia soils with q max values of 1692, 1370, and 1317 mg kg−1, respectively. The Freundlich distribution coefficient (K d) was highest in the Pullman soil (21.6 L kg−1) and lowest in the Amarillo (1.38 L kg−1). Sorption parameters such as K d, N (sorption intensity constant) and qmax, varied among the soils, and the variability associated with K d and N in these semi-arid soils was explained by soil properties such as pH, organic matter, calcium carbonate, total free iron (Fe), sand, clay, total aluminum, total Fe, and total manganese contents. Findings from this study are important in understanding the environmental fate of As in semi-arid/arid climates and could be extended to other regions with similar soil characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

K d :

Freundlich distribution coefficient

K L :

Langmuir sorption free energy constant

N :

Freundlich sorption intensity constant

q max :

Sorption maxima

D-R:

Dubinin-Radushkevich

SHP:

Southern High Plains

References

  • Adriano, D. C. (2001). Trace elements in terrestrial environments: biogeochemistry, bioavailability, and risks of metals. New York: Springer Science & Business Media.

    Book  Google Scholar 

  • Altin, O., Özbelge, H. Ö., & Doğu, T. (1998). Use of general purpose adsorption isotherms for heavy metal–clay mineral interactions. Journal of Colloid and Interface Science, 198(1), 130–140.

    Article  Google Scholar 

  • Ashjaei, S., Miller, W. P., Cabrera, M. L., & Hassan, S. M. (2011). Arsenic in soils and forages from poultry litter-amended pastures. International Journal of Environmental Research and Public Health, 8(5), 1534–1546.

    Article  Google Scholar 

  • Bolster, C. H., & Hornberger, G. M. (2007). On the use of linearized Langmuir equations. Soil Science Society of America Journal, 71(6), 1796–1806.

    Article  CAS  Google Scholar 

  • Bowell, R. J. (1994). Sorption of arsenic by iron oxides and oxyhydroxides in soils. Applied Geochemistry, 9(3), 279–286.

    Article  CAS  Google Scholar 

  • Bradl, H. B. (2004). Adsorption of heavy metal ions on soils and soils constituents. Journal of Colloid and Interface Science, 277(1), 1–18.

    Article  CAS  Google Scholar 

  • Carbonell-Barrachina, A., Jugsujinda, A., DeLaune, R. D., Patrick, W. H., Jr., Burló, F., Sirisukhodom, S., & Anurakpongsatorn, P. (1999). The influence of redox chemistry and pH on chemically active forms of arsenic in sewage sludge-amended soil. Environment International, 25(5), 613–618.

    Article  CAS  Google Scholar 

  • Castaldi, P., Mele, E., Silvetti, M., Garau, G., & Deiana, S. (2014). Water treatment residues as accumulators of oxoanions in soil. Sorption of arsenate and phosphate anions from an aqueous solution. Journal of Hazardous Materials, 264, 144–152.

    Article  CAS  Google Scholar 

  • Das, P., Sarkar, D., Makris, K. C., Punamiya, P., & Datta, R. (2013). Effectiveness of urea in enhancing the extractability of 2, 4, 6-trinitrotoluene from chemically variant soils. Chemosphere, 93(9), 1811–1817.

    Article  CAS  Google Scholar 

  • Dias, F. F., Allen, H. E., Guimarães, J. R., Taddei, M. H. T., Nascimento, M. R., & Guilherme, L. R. G. (2009). Environmental behavior of arsenic (III) and (V) in soils. Journal of Environmental Monitoring, 11(7), 1412–1420.

    Article  CAS  Google Scholar 

  • Doušová, B., Martaus, A., Filippi, M., & Koloušek, D. (2008). Stability of arsenic species in soils contaminated naturally and in an anthropogenic manner. Water, Air, and Soil Pollution, 187(1-4), 233–241.

    Google Scholar 

  • Elkhatib, E. A., Bennett, O. L., & Wright, R. J. (1984). Arsenite sorption and desorption in soils. Soil Science Society of America Journal, 48(5), 1025–1030.

    Article  CAS  Google Scholar 

  • Fahlquist, L., & Stanton, J. (2007). Ground-water quality beneath irrigated cropland of the Northern and Southern High Plains Aquifer, Nebraska and Texas. Scientific Investigations Report 2006-5196. United States Geological Survey. http://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1003&context=usgspubs. Accessed 24 March 2015.

  • Feddema, J. J. (2005). A revised Thornthwaite-type global climate classification. Physical Geography, 26(6), 442–466.

    Article  Google Scholar 

  • Garcıa-Sánchez, A., Alastuey, A., & Querol, X. (1999). Heavy metal adsorption by different minerals: application to the remediation of polluted soils. Science of the Total Environment, 242(1), 179–188.

    Article  Google Scholar 

  • Gee, G. W., & Bauder, J. W. (1986). Particle-size analysis. In A. Klute (Ed.), Methods of soil analysis, Part 1-Pyhiscal and Mineralogical Methods (pp. 383–411). Madison: Soil Science Society of America.

    Google Scholar 

  • Ghezzi, J., Karathanasis, A., Matocha, C., Unrine, J., & Thompson, Y. (2014). Competitive sorption behavior of arsenic, selenium, copper and lead by soil and biosolid nano- and macro-colloid particles. Open Journal of Soil Science, 4(09), 293.

    Article  CAS  Google Scholar 

  • Goldberg, S., Tabatabai, M. A., Sparks, D. L., Al-Amoodi, L., & Dick, W. A. (2005). Equations and models describing adsorption processes in soils. In Chemical Processes in Soils (pp. 489–517). Madison: Soil Science Society of America.

  • Gurdak, J. J., & Roe, C. D. (2009). Recharge rates and chemistry beneath playas of the High Plains aquifer: a literature review and synthesis. US Geological Survey. http://pubs.usgs.gov/circ/1333/pdf/C1333.pdf. Accessed 24 March 2015.

  • Ho, Y. S., Porter, J. F., & McKay, G. (2002). Equilibrium isotherm studies for the sorption of divalent metal ions onto peat: copper, nickel and lead single component systems. Water, Air, and Soil Pollution, 141(1-4), 1–33.

    Article  CAS  Google Scholar 

  • Kundu, S., & Gupta, A. K. (2006). Adsorptive removal of As (III) from aqueous solution using iron oxide coated cement (IOCC): evaluation of kinetic, equilibrium and thermodynamic models. Separation and Purification Technology, 51(2), 165–172.

    Article  CAS  Google Scholar 

  • Li, F., Zheng, Y. M., & He, J. Z. (2009). Microbes influence the fractionation of arsenic in paddy soils with different fertilization regimes. Science of the Total Environment, 407(8), 2631–2640.

    Article  CAS  Google Scholar 

  • Lin, Z., & Puls, R. W. (2000). Adsorption, desorption and oxidation of arsenic affected by clay minerals and aging process. Environmental Geology, 39(7), 753–759.

    Article  CAS  Google Scholar 

  • Loeppert, R. H., & Inskeep, W. P. (1996). Iron. In D. L. Sparks, A. L. Page, P. A. Helmke, R. H. Loeppert, P. N. Soltanpour, M. A. Tabatabai, C. T. Johnston, & M. E. Sumner (Eds.), Methods of soil analysis. Part 3-chemical methods (pp. 639–664). Madison: Soil Science Society of America.

    Google Scholar 

  • Loeppert, R. H., & Suarez, D. L. (1996). Carbonate and gypsum. In D. L. Sparks, A. L. Page, P. A. Helmke, R. H. Loeppert, P. N. Soltanpour, M. A. Tabatabai, C. T. Johnston, & M. E. Sumner (Eds.), Methods of soil analysis. Part 3-chemical methods (pp. 437–474). Madison: Soil Science Society of America.

    Google Scholar 

  • Lombi, E., Sletten, R. S., & Wenzel, W. W. (2000). Sequentially extracted arsenic from different size fractions of contaminated soils. Water, Air, and Soil Pollution, 124(3-4), 319–332.

    Article  CAS  Google Scholar 

  • Maji, S. K., Pal, A., & Pal, T. (2008). Arsenic removal from real-life groundwater by adsorption on laterite soil. Journal of Hazardous Materials, 151(2), 811–820.

    Article  CAS  Google Scholar 

  • Meng, S., Wang, H., Liu, H., Yang, C., Wei, Y., & Hou, D. (2014). Evaluation of the ability of ferrihydrite to bind heavy metal ions: based on formation environment, adsorption reversibility and ageing. Applied Geochemistry, 45, 114–119.

    Article  CAS  Google Scholar 

  • National Oceanic and Atmospheric Administration (NOAA) (2014). National Weather Service Weather Forecast. http://www.srh.noaa.gov/lub/?n=climate-klbb-pcpn-history. Accessed 24 February 2015.

  • Nelson, D. W., & Sommers, L. E. (1996). Total carbon, organic carbon, and organic matter. In D. L. Sparks, A. L. Page, P. A. Helmke, R. H. Loeppert, P. N. Soltanpour, M. A. Tabatabai, C. T. Johnston, & M. E. Sumner (Eds.), Methods of soil analysis. Part 3-Chemical methods (pp. 961–1010). Madison: Soil Science Society of America.

    Google Scholar 

  • Nordstrom, K. F., & Hotta, S. (2004). Wind erosion from cropland in the USA: a review of problems, solutions and prospects. Geoderma, 121(3), 157–167.

    Article  Google Scholar 

  • Rhoades, J. D. (1996). Salinity: electrical conductivity and total dissolved solids. In D. L. Sparks, A. L. Page, P. A. Helmke, R. H. Loeppert, P. N. Soltanpour, M. A. Tabatabai, C. T. Johnston, & M. E. Sumner (Eds.), Methods of soil analysis. Part 3-Chemical methods (pp. 417–435). Madison: Soil Science Society of America.

    Google Scholar 

  • Rodriguez, R. R., Basta, N. T., Casteel, S. W., Armstrong, F. P., & Ward, D. C. (2003). Chemical extraction methods to assess bioavailable arsenic in soil and solid media. Journal of Environmental Quality, 32(3), 876–884.

    Article  CAS  Google Scholar 

  • Sahu, S. J., Nath, B., Roy, S., Mandal, B., & Chatterjee, D. (2011). A laboratory batch study on arsenic sorption and desorption on guava orchard soils of Baruipur, West Bengal, India. Journal of Geochemical Exploration, 108(2), 157–162.

    Article  CAS  Google Scholar 

  • Scanlon, B. R., Nicot, J. P., Reedy, R. C., Tachovsky, J. A., Nance, S. H., Smyth, R. C., Keese, K., Ashburn, R. E., & Christian, L. (2005). Evaluation of arsenic contamination in texas. The University of Texas at Austin, Bureau of Economic Geology, final report prepared for Texas Commission on Environmental Quality, under umbrella contract no. 582-4-56385 and work order no. UT-08-5-70828, 177 (pp. 167).

  • Scanlon, B. R., Nicot, J. P., Reedy, R. C., Kurtzman, D., Mukherjee, A., & Nordstrom, D. K. (2009). Elevated naturally occurring arsenic in a semiarid oxidizing system, Southern High Plains aquifer, Texas, USA. Applied Geochemistry, 24(11), 2061–2071.

    Article  CAS  Google Scholar 

  • Smedley, P. L., & Kinniburgh, D. G. (2002). A review of the source, behavior and distribution of arsenic in natural waters. Applied Geochemistry, 17(5), 517–568.

    Article  CAS  Google Scholar 

  • Smith, E., Naidu, R., & Alston, A. M. (1999). Chemistry of arsenic in soils: I. Sorption of arsenate and arsenite by four Australian soils. Journal of Environmental Quality, 28(6), 1719–1726.

    Article  CAS  Google Scholar 

  • Soil Survey Staff. (1999). Soil taxonomy: a basic system of soil classification for making and interpreting soil surveys (2nd ed.). Washington, DC: USDA-NRCS. U.S. Gov. Print. Off.

    Google Scholar 

  • Sparks, D.L. (2003). Environmental soil chemistry. San Diego: Academic Press, pp. 133–186.

  • Sparks, D. L., Page, A. L., Helmke, P. A., Loeppert, R. H., Soltanpour, P. N., Tabatabai, M. A., Johnston, C. T., & Sumner, M. E. (1996). Methods of soil analysis. Part 3-chemical methods. Madison: Soil Science Society of America.

    Google Scholar 

  • Sposito, G. (2008). The chemistry of soil (2nd ed.). New York: Oxford University Press.

    Google Scholar 

  • Stietiya, M. H., Duqqah, M., Udeigwe, T., Zubi, R., & Ammari, T. (2014). Fate and distribution of heavy metals in wastewater irrigated calcareous soils. The Scientific World Journal, 2014. doi: 10.1155/2014/865934.

  • Stout, J. E. (2001). Dust and environment in the southern high plains of North America. Journal of Arid Environments, 47(4), 425–441.

    Article  Google Scholar 

  • Su, C., & Puls, R. W. (2008). Arsenate and arsenite sorption on magnetite: relations to groundwater arsenic treatment using zerovalent iron and natural attenuation. Water, Air, and Soil Pollution, 193(1-4), 65–78.

    Article  CAS  Google Scholar 

  • Tessier, A., Campbell, P. G., & Bisson, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 51(7), 844–851.

    Article  CAS  Google Scholar 

  • Texas Park and Wildlife Department (2015). https://tpwd.texas.gov/landwater/land/habitats/high_plains/wetlands/playa.phtml. Accessed 25 April 2015.

  • Thomas, G. W. (1996). Soil pH and soil acidity. In D. L. Sparks, A. L. Page, P. A. Helmke, R. H. Loeppert, P. N. Soltanpour, M. A. Tabatabai, C. T. Johnston, & M. E. Sumner (Eds.), Methods of soil analysis. Part 3-Chemical methods (pp. 475–490). Madison: Soil Science Society of America.

    Google Scholar 

  • Udeigwe, T. K., Young, J., Kandakji, T., Weindorf, D. C., Mahmoud, M. A., & Stietiya, M. H. (2015). Elemental quantification, chemistry, and source apportionment in golf course facilities in semi-arid urban landscape using portable x-ray fluorescence spectrometer. Solid Earth Discussions, 7(1), 37–62.

    Article  Google Scholar 

  • United States Department of Agriculture (USDA) (2012). Sorption isotherm spreadsheet. http://www.ars.usda.gov/services/software/download.htm?softwareid=201. Accessed 02 January 2015.

  • United States Department of Agriculture-National Agricultural Statistics Service (USDA-NASS) (2014). Cotton Ginnings. http://usda.mannlib.cornell.edu/usda/current/CottGinnSu/CottGinnSu-05-09-2014.pdf. Accessed 30 March 2015.

  • United States Environmental Protection Agency (USEPA) (1996). Method 3050B: Acid digestion of sediments, sludges, and soils. http://www.epa.gov/osw/hazard/testmethods/sw846/pdfs/3050b.pdf. Accessed 24 March 2015.

  • Venkataraman, K., & Uddameri, V. (2012). Modeling simultaneous exceedance of drinking-water standards of arsenic and nitrate in the Southern Ogallala aquifer using multinomial logistic regression. Journal of Hydrology, 458, 16–27.

    Article  Google Scholar 

  • Venne, L. S., Cobb, G. P., Coimbatore, G., Smith, L. M., & McMurry, S. T. (2006). Influence of land use on metal concentrations in playa sediments and amphibians in the Southern High Plains. Environmental Pollution, 144(1), 112–118.

    Article  CAS  Google Scholar 

  • Zhang, H., & Selim, H. M. (2005). Kinetics of arsenate adsorption-desorption in soils. Environmental Science and Technology, 39(16), 6101–6108.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theophilus K. Udeigwe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kandakji, T., Udeigwe, T.K., Athanasiou, D. et al. Chemistry of Arsenic in Semi-Arid Alkaline Soils of the Southern High Plains, USA: Sorption Characteristics and Interactions with Soil Constituents. Water Air Soil Pollut 226, 320 (2015). https://doi.org/10.1007/s11270-015-2543-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-015-2543-y

Keywords

Navigation