Skip to main content
Log in

The Influence of Different Pavement Surfaces on Atmospheric Copper, Lead, Zinc, and Suspended Solids Attenuation and Wash-Off

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

From a storm water management perspective, not all pavements are equivalent. Pavement type can impose a strong influence on pollutant wash-off dynamics. Pollutant loads from pavement wash-off are affected by the pavements’ physical and chemical composition. However, there is a dearth of information regarding how pavement type influences atmospherically deposited pollutant loads in storm water. Therefore, experimental impermeable and permeable asphalt and concrete boards were deployed in a residential area in Christchurch, New Zealand, to quantify the influence of pavement type on storm water pollutant dynamics. Each pavement type had four replicate systems elevated 500 mm from the ground at a 4° slope. Wash-off from the pavements was collected and analysed for total suspended solids and metals (Cu, Pb, and Zn) from June to August 2014. Results show that Cu and Zn loads were lower from the concrete pavements than the asphalt pavements because the carbonates and hydroxides within the concrete adsorbed Cu and Zn. Run-off from the impermeable asphalt had the highest loads of Zn, which was attributed to Zn leaching from the asphalt. Infiltrate from permeable asphalt provided little/no retention of Cu and Zn, due to the low pH of the infiltrate causing Cu and Zn to partition into the dissolved phase and leach through the pavement. Total suspended solid (TSS) and Pb loads were the highest in run-off from the impermeable concrete, which was attributed to the smooth surface enabling particulates to be easily mobilised. TSS and Pb loads were the lowest from the permeable pavement due to the permeable material filtering out particulates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adachi, K., & Tainosho, Y. (2004). Characterization of heavy metal particles embedded in tire dust. Environment International, 30, 1009–1017. doi:10.1016/j.envint.2004.04.004.

    Article  CAS  Google Scholar 

  • APHA. (2005). Standard methods for the examination of water and wastewater (21st ed.). Washington D.C.: American Public Health Association.

    Google Scholar 

  • Azimi, S., Ludwig, A., Thévenot, D. R., & Colin, J.-L. (2003). Trace metal determination in total atmospheric deposition in rural and urban areas. Science of the Total Environment, 308(1–3), 247–256. doi:10.1016/s0048-9697(02)00678-2.

    Article  CAS  Google Scholar 

  • Aziz, H. A., Othman, N., Yusuff, M. S., Basri, D. R. H., Ashaari, F. A. H., & Adlan, M. N. (2001). Removal of copper from water using limestone filtration technique: determination of mechanism of removal. Environment International, 26(5–6), 395–399. doi:10.1016/S0160-4120(01)00018-6.

    Article  CAS  Google Scholar 

  • Bahar, B., Herting, G., Wallinder, I., Hakkila, K., Leygraf, C., & Virta, M. (2008). The interaction between concrete pavement and corrosion-induced copper runoff from buildings. Environmental Monitoring and Assessment, 140(1), 175–189. doi:10.1007/s10661-007-9858-0.

    Article  CAS  Google Scholar 

  • Barrett, M. E. (2008). Effects of a permeable friction course on highway runoff. Journal of Irrigation and Drainage Engineering, 134(5), 646–651. doi:10.1061/(asce)0733-9437(2008)134:5(646).

    Article  Google Scholar 

  • Barrett, M. E., Kearfott, P., & Malina, J. F., Jr. (2006). Stormwater quality benefits of a porous friction course and its effect on pollutant removal by roadside shoulders. Water Environment Research, 78(11), 2177–2185. doi:10.2307/25053618.

    Article  CAS  Google Scholar 

  • Barrett, M. E., & Shaw, C. B. (2007). Benefits of porous asphalt overlay on storm water quality. Transportation Research Record, 127-134, doi:10.3141/2025-13.

  • Beasley, G., & Kneale, P. (2002). Reviewing the impact of metals and PAHs on macroinvertebrates in urban watercourses. Progress in Physical Geography, 26(2), 236–270. doi:10.1191/0309133302pp334ra.

    Article  Google Scholar 

  • Berger, J., & Denby, B. (2011). A generalised model for traffic induced road dust emissions. Model description and evaluation. Atmospheric Environment, 45(22), 3692–3703. doi:10.1016/j.atmosenv.2011.04.021.

    Article  CAS  Google Scholar 

  • Bernot, M. J., Calkins, M., Bernot, R. J., & Hunt, M. (2011). The influence of different urban pavements on water chemistry. Road Materials and Pavement Design, 12(1), 159–176. doi:10.1080/14680629.2011.9690357.

    Article  Google Scholar 

  • Bramer, L. (2007). Instantaneous-profile laser scanner: user’s manual. In: J. Frankenberger (ed).

  • Brandt, H. C. A., & de Groot, P. C. (2001). Aqueous leaching of polycyclic aromatic hydrocarbons from bitumen and asphalt. Water Research, 35(17), 4200–4207. doi:10.1016/S0043-1354(01)00216-0.

    Article  CAS  Google Scholar 

  • Cao, Z., Yang, Y., Lu, J., & Zhang, C. (2011). Atmospheric particle characterization, distribution, and deposition in Xi’an, Shaanxi Province, Central China. Environmental Pollution, 159(2), 577–584. doi:10.1016/j.envpol.2010.10.006.

    Article  CAS  Google Scholar 

  • Coe, R. (2002). It's the effect size, stupid: what effect size is and why it is important. Paper presented at the Annual Conference of the British Educational Research Association, England, 12-14 September, 2002.

  • Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). New Jersey: Lawrence Erlbaum Associates.

    Google Scholar 

  • Cong, P., Xun, P., Xing, M., & Chen, S. (2013). Investigation of asphalt binder containing various crumb rubbers and asphalts. Construction and Building Materials, 40(0), 632–641. doi:10.1016/j.conbuildmat.2012.11.063.

    Article  Google Scholar 

  • Darboux, F., & Huang, C.-h. (2003). An instantaneous-profile laser scanner to measure soil surface microtopography. Soil Science Society of America Journal, 67(1), 92–99. doi:10.2136/sssaj2003.9200.

    Article  CAS  Google Scholar 

  • Davis, A. P., Shokouhian, M., & Ni, S. (2001). Loading estimates of lead, copper, cadmium, and zinc in urban runoff from specific sources. Chemosphere, 44(5), 997–1009. doi:10.1016/s0045-6535(00)00561-0.

    Article  CAS  Google Scholar 

  • Davis, B. S., & Birch, G. F. (2011). Spatial distribution of bulk atmospheric deposition of heavy metals in metropolitan Sydney, Australia. Water, Air, & Soil Pollution, 214(1-4), 147–162. doi:10.1007/s11270-010-0411-3.

    Article  CAS  Google Scholar 

  • Davis, P. J., Wright, I. A., Jonasson, O. J., & Findlay, S. J. (2010). Impact of concrete and PVC pipes on urban water chemistry. Urban Water Journal, 7(4), 233–241.

    Article  Google Scholar 

  • Dierkes, C., Holte, A., & Geiger, W. F. (1999). Heavy metal retention within a porous pavement structure. Sydney: 8th International Conference on Urban Storm Drainage.

    Google Scholar 

  • Dierkes, C., Kuhlmann, L., Kandasamy, J., & Angelis, G. (2002). Pollution retention capability and maintenance of permeable pavements. Portland: Proceedings of the Global Solutions for Urban Drainage, Ninth International Conference on Urban Drainage. September 8-13, 2002.

    Book  Google Scholar 

  • Eck, B., Winston, R., Hunt, W., & Barrett, M. (2012). Water quality of drainage from permeable friction course. Journal of Environmental Engineering, 138(2), 174–181. doi:10.1061/(ASCE)EE.1943-7870.0000476.

    Article  CAS  Google Scholar 

  • Egodawatta, P., Thomas, E., & Goonetilleke, A. (2007). Mathematical interpretation of pollutant wash-off from urban road surfaces using simulated rainfall. Water Research, 41(13), 3025–3031. doi:10.1016/j.watres.2007.03.037.

    Article  CAS  Google Scholar 

  • ESRI. (2013). ArcMap 10.2. Redlands, California: Environmental Systems Research Institute.

    Google Scholar 

  • Fassman, E. A., & Blackbourn, S. (2010). Urban runoff mitigation by a permeable pavement system over impermeable soils. Journal of Hydrologic Engineering, 15(6), 475–485. doi:10.1061/(asce)he.1943-5584.0000238.

    Article  Google Scholar 

  • Göbel, P., Dierkes, C., & Coldewey, W. G. (2007). Storm water runoff concentration matrix for urban areas. Journal of Contaminant Hydrology, 91(1–2), 26–42. doi:10.1016/j.jconhyd.2006.08.008.

    Article  Google Scholar 

  • Haselbach, L., Poor, C., & Tilson, J. (2014). Dissolved zinc and copper retention from stormwater runoff in ordinary portland cement pervious concrete. Construction and Building Materials, 53, 652–657. doi:10.1016/j.conbuildmat.2013.12.013.

    Article  Google Scholar 

  • Horvath, A., & Hendrickson, C. (1998). Comparison of environmental implications of asphalt and steel-reinforced concrete pavements. Transportation Research Record, 1626, 105–113. doi:10.3141/1626-13.

    Article  Google Scholar 

  • James, W., & Shahin, R. (1998). A laboratory examination of pollutants leached from four different pavements by acid rain. In W. James (Ed.), Advances in modeling the management of stormwater impacts (Vol. 6). Ontario, Canada: Computational Hydraulics International.

    Google Scholar 

  • Kennedy, P., & Gadd, J. (2000). Preliminary examination of trace elements in tyres, brake pads and road bitumen in New Zealand. New Zealand: Ministry of Transport

  • Legret, M., Colandini, V., & Le Marc, C. (1996). Effects of a porous pavement with reservoir structure on the quality of runoff water and soil. Science of the Total Environment, 189–190, 335–335. doi:10.1016/0048-9697(96)05228-x.

    Article  Google Scholar 

  • Lenschow, P., Abraham, H. J., Kutzner, K., Lutz, M., Preuß, J. D., & Reichenbächer, W. (2001). Some ideas about the sources of PM10. Atmospheric Environment, 35(0), S23–S33. doi:10.1016/S1352-2310(01)00122-4. Supplement 1.

    Article  CAS  Google Scholar 

  • Lindgren, A. (1996). Asphalt wear and pollution transport. Science of the Total Environment, 189–190(0), 281–286. doi:10.1016/0048-9697(96)05220-5.

    Article  Google Scholar 

  • Luhana, L., Sokhi, R., Warner, L., Mao., H., Boulter, P., McCrae, I., et al. (2004). Particulates characterisation of exhaust particulate emissions from road vehicles. In: Measurement of non-exhaust particulate matter. Belgium: European Commission: Directorate General Transport and Environment

  • Murphy, L. U., O’Sullivan, A., & Cochrane, T. A. (2014). Quantifying the spatial variability of airborne pollutants to stormwater runoff in different land-use catchments. Water, Air, & Soil Pollution, 225(7), 1–13. doi:10.1007/s11270-014-2016-8.

    Article  CAS  Google Scholar 

  • NAPA & EAPA (2011). The asphalt paving industry: a global perspective. (2nd ed.).Brussels, Belgium and Maryland, U.S.: European Asphalt Pavement Association and National Asphalt Pavement Association

  • Nicholson, K. W., & Branson, J. R. (1990). Factors affecting resuspension by road traffic. Science of the Total Environment, 93(0), 349–358. doi:10.1016/0048-9697(90)90126-F.

    Article  CAS  Google Scholar 

  • NZ Transport Agency (2011). Specification for roading bitumens. (Vol. SPSM1: 2010 110114). New Zealand: NZ Transport Agency

  • Olejnik, S., & Algina, J. (2000). Measure of effect size for comparative studies: applications, interpretations, and limitations. Contemporary Educational Psychology, 25, 241–286.

    Article  Google Scholar 

  • Perkins, C., Nadim, F., & Arnold, W. R. (2005). Effects of PVC, cast iron and concrete conduit on concentrations of copper in stormwater. Urban Water Journal, 2(3), 183–191. doi:10.1080/15730620500236658.

    Article  CAS  Google Scholar 

  • Pitt, R., Field, R., Lalor, M., & Brown, M. (1995). Urban stormwater toxic pollutants: assessment, sources, and treatability. Water Environment Research, 67(3), 260–275. doi:10.2175/106143095X131466.

    Article  CAS  Google Scholar 

  • Rhodes, E. P., Ren, Z., & Mays, D. C. (2012). Zinc leaching from tire crumb rubber. Environmental Science & Technology, 46(23), 12856–12863. doi:10.1021/es3024379.

    Article  CAS  Google Scholar 

  • Rogge, W. F., Hildemann, L. M., Mazurek, M. A., Cass, G. R., & Simoneit, B. R. T. (1993). Sources of fine organic aerosol. 3. Road dust, tire debris, and organometallic brake lining dust: roads as sources and sinks. Environmental Science & Technology, 27(9), 1892–1904. doi:10.1021/es00046a019.

    Article  CAS  Google Scholar 

  • Ruellan, S., & Cachier, H. (2001). Characterisation of fresh particulate vehicular exhausts near a Paris high flow road. Atmospheric Environment, 35(2), 453–468. doi:10.1016/S1352-2310(00)00110-2.

    Article  CAS  Google Scholar 

  • Rushton, B. (2001). Low-impact parking lot design reduces runoff and pollutant loads. Journal of Water Resources Planning and Management, 127(3), 172–179. doi:10.1061/(ASCE)0733-9496(2001)127:3(172).

    Article  Google Scholar 

  • Sabin, L. D., Lim, J. H., Stolzenbach, K. D., & Schiff, K. C. (2005). Contribution of trace metals from atmospheric deposition to stormwater runoff in a small impervious urban catchment. Water Research, 39(16), 3929–3937. doi:10.1016/j.watres.2005.07.003.

    Article  CAS  Google Scholar 

  • Sadler, R., Delamont, C., White, P., & Connell, D. (1999). Contaminants in soil as a result of leaching from asphalt. Toxicological & Environmental Chemistry, 68(1-2), 71–81. doi:10.1080/02772249909358646.

    Article  CAS  Google Scholar 

  • Sampson, L. C., Houston, A. V., Charbeneau, R., & Barrett, M. E. (2014). Water quality and hydraulic performance of permeable friction course on curbed sections of highways. Austin, TX: Center for Transportation Research.

  • Sansalone, J., Kuang, X., & Ranieri, V. (2008). Permeable pavement as a hydraulic and filtration interface for urban drainage. Journal of Irrigation and Drainage Engineering, 134(5), 666–674. doi:10.1061/(ASCE)0733-9437(2008)134:5(666).

    Article  Google Scholar 

  • Scholz, M., & Grabowiecki, P. (2007). Review of permeable pavement systems. Building and Environment, 42(11), 3830–3836. doi:10.1016/j.buildenv.2006.11.016.

    Article  Google Scholar 

  • Sehmel, G. A. (1973). Particle resuspension from an asphalt road caused by car and truck traffic. Atmospheric Environment, 7(3), 291–309. doi:10.1016/0004-6981(73)90078-4.

    Article  Google Scholar 

  • Shaheen, D. G. (1975). Contributions of urban roadway usage to water pollution. (Vol. 600/2-75-004). Washington D.C: Environmental Protection Agency.

    Google Scholar 

  • Sternbeck, J., Sjödin, Å., & Andréasson, K. (2002). Metal emissions from road traffic and the influence of resuspension—results from two tunnel studies. Atmospheric Environment, 36(30), 4735–4744. doi:10.1016/s1352-2310(02)00561-7.

    Article  CAS  Google Scholar 

  • Stotz, G., & Krauth, K. (1994). Pollution of effluents from pervious pavements of an experimental highway section. First results. Science of the Total Environment, 146-47, 465–465. doi:10.1016/0048-9697(94)90270-4.

    Article  Google Scholar 

  • Sundberg, R. (1998). The fate of copper released from the Vasa Ship Museum. Metall, 52(4), 230–231.

    CAS  Google Scholar 

  • Transit New Zealand (2007). New Zealand supplement to the document, pavement design - a guide to the structural design of road pavements (AUSTROADS, 2004). (Vol. 2).

  • Vaze, J., & Chiew, F. H. S. (2002). Experimental study of pollutant accumulation on an urban road surface. Urban Water, 4(4), 379–389. doi:10.1016/S1462-0758(02)00027-4.

    Article  CAS  Google Scholar 

  • Wicke, D., Cochrane, T. A., & O’Sullivan, A. D. (2012). Atmospheric deposition and storm induced runoff of heavy metals from different impermeable urban surfaces. Journal of Environmental Monitoring, 14(1), 209–216. doi:10.1039/c1em10643k.

    Article  CAS  Google Scholar 

  • Zhao, H., Li, X., Wang, X., & Tian, D. (2010). Grain size distribution of road-deposited sediment and its contribution to heavy metal pollution in urban runoff in Beijing, China. Journal of Hazardous Materials, 183(1–3), 203–210. doi:10.1016/j.jhazmat.2010.07.012.

    Article  CAS  Google Scholar 

  • Zoppou, C. (2001). Review of urban storm water models. Environmental Modelling & Software, 16(3), 195–231. doi:10.1016/S1364-8152(00)00084-0.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the following people: Sally Gaw and Robert Stainthorpe for ICP-MS analysis, Daniel Wicke for his guidance in developing this research, the University of Canterbury’s Doctoral Scholarship for providing financial support, Fulton Hogan for supplying the asphalt for this research, and the Department of Civil and Natural Resources technical staff, in particular Peter McGuigan, Ian Sheppard, and Kevin Wines, for their help in constructing and deploying out the experimental set-up. Additionally, thank you to the Department of Civil and Natural Resources for meeting the financial costs of the resources used in this research.

Conflict of Interest

Fulton Hogan NZ supplied asphalt used in this research (a small quantity of a large batch used for paving roads), but they were not involved in any aspects of the research or reporting. No other source of potential conflict of interest has been identified for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas A. Cochrane.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murphy, L.U., Cochrane, T.A. & O’Sullivan, A. The Influence of Different Pavement Surfaces on Atmospheric Copper, Lead, Zinc, and Suspended Solids Attenuation and Wash-Off. Water Air Soil Pollut 226, 232 (2015). https://doi.org/10.1007/s11270-015-2487-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-015-2487-2

Keywords

Navigation