Skip to main content
Log in

Physiological and Cytological Responses of Deschampsia cespitosa and Populus tremuloides to Soil Metal Contamination

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Soil metal contamination represents serious threats to plant ecosystem sustainability. Knowledge of metal distribution in plants and the effects of long-term exposure to high levels of metals on cytological stability in Deschampsia cespitosa and Populus tremuloides population is limited. The objective of the present study was to determine how D. cespitosa and P. tremuloides plants cope with soil metal contamination. The effects of high copper (Cu) and nickel (Ni) soil concentrations on cytological stability were also analyzed. The results provide strong evidence that D. cespitosa plants cope with metal contaminations by accumulating them in their root system with limited translocation to their aerial plant parts. Metal bioaccumulation factors were high with values of 5.53 (Cu), 35.19 (Fe), 151.21 (Mg), 24.38 (Ni), and 27.42 (Zn). On the other hand, the bioaccumulation factors in P. tremuloides were 0.42 (Cu), 1.67 (Fe), 4.77 (Mg), 0.94 (Ni), and 5.53 (Zn). The translocation factors (TFs) from roots to leaves for poplar (P. tremuloides) were high for Ni (8.38) and low for Cu (0.71). Cytological analysis clearly showed that long exposure of roots to high levels of metal contamination lead to significant mitotic disruption. Overall, 100 % of the plants from metal-contaminated sites showed a high level of mixoploidy compared to 17 % from the reference sites. Lagging chromosomes in mitotic anaphase were observed in most of the plants from metal-contaminated sites. These mitotic abnormalities appear to have no detectable effects on plant growth and survival.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bert, V., Bonnin, I., Saumitou-Laprade, P., de Laguerie, P., & Petit, D. (2002). Do Arabidopsis halleri from nonmetallicolous populations accumulate zinc and cadmium more effectively than those from metallicolous populations? New Phytologist, 155, 47–57.

    Article  CAS  Google Scholar 

  • Berta, M., Giovannelli, A., Camussi, A., & Racchi, M. L. (2010). Transcriptome changes in the cambial region of poplar (Populus alba L.) in response to water deficit. Plant Biology, 12, 341–354.

    Article  CAS  Google Scholar 

  • Birchler, J. A., & Veitia, R. A. (2007). The gene balance hypothesis: from classical genetics to modern genomics. Plant Cell, 19, 395–402.

    Article  CAS  Google Scholar 

  • Birchler, J. A., Bhadra, U., Bhadra, M. P., & Auger, D. L. (2001). Dosage-dependent gene regulation in multicellular eukaryotes: implications for dosage compensation, aneuploid syndromes, and quantitative traits. Developmental Biology, 234, 275–288.

    Article  CAS  Google Scholar 

  • Borghi, M., Tognetti, R., Monteforti, G., & Sebastiani, L. (2008). Responses of two poplar species (Populus alba and Populus x canadensis) to high copper concentrations. Evironmental and Experimental Biology, 62, 290–299.

    CAS  Google Scholar 

  • Bradshaw, A. D. (1984). Adaptation of plants to soils containing toxic metals—a test for conceit. 4–19.

  • Brilman, L. A., & Watkins, E. (2003). Hairgrasses (Deschampsia spp.). In D. Casler (Ed.), Turfgrass biology, genetics and breeding (pp. 225–231). Hoboken, New Jersey: John Wiley & Sons.

    Google Scholar 

  • Carter, M. R. (1993). Soil sampling and methods of analysis. Boca Raton: Lewis.

    Google Scholar 

  • Cooper, J. L., & Birchler, J. A. (2001). Developmental impact on trans-acting dosage effects in maize aneuploids. Genesis, 31, 64–71.

    Article  CAS  Google Scholar 

  • Cox, R. M., & Hutchinson, T. C. (1980). Multiple metal tolerances in the grass Deschampsia cespitosa (L.) Beauv. from the Sudbury smelting area. New Phytologist, 84, 631–647.

    Article  CAS  Google Scholar 

  • Di Baccio, D., Kopriva, S., Sebastiani, L., & Rennenberg, H. (2005). Does glutathione metabolism have a role in the defence of poplar against zinc excess? New Phytologist, 167, 73–80.

    Article  Google Scholar 

  • Di Baccio, D., Galla, G., Bracci, T., Andreucci, A., Barcaccia, G., Tognetti, R., Sebastiani, L., & Moshelion, M. (2011). Transcriptome analyses of Populus × euramericana clone I-214 leaves exposed to excess zinc. Tree Physiology, 31, 1293–1308.

    Article  Google Scholar 

  • Dierssen, M., Herault, Y., & Estivill, X. (2009). Aneuploidy: from a physiological mechanism of variance to Down syndrome. Physiological Reviews, 89, 887–920.

    Article  CAS  Google Scholar 

  • Dobrzeniecka, S., Nkongolo, K. K., Michael, P., Mehes-Smith, M., & Beckett, P. (2011). Genetic Analysis of Black Spruce (Picea mariana) Populations from dry and wet areas of a metal-contaminated region in Ontario (Canada). Water, Air, and Soil Pollution, 215, 117–125.

    Article  CAS  Google Scholar 

  • Fischerova, Z., Tlustos, P., Szakova, J., & Sichorova, K. (2006). A comparision of phytoremediation capability of selected plant species for given trace elements. Environmental Pollution, 144, 93–100.

    Article  CAS  Google Scholar 

  • Foy, C. D., Chaney, R. L., & White, M. C. (1978). The physiology of metal toxicity in plants. Annual Review of Plant Physiology, 29, 511–566.

    Article  CAS  Google Scholar 

  • Gavlak, R. G., Horneck, D. A., & Miller, R. O. (2005). Plant, soil and water reference methods for the Western Region. Western Rural Development Center (WREP), Corvallis, Oregon USA. p. 198.

  • Hall, J. L., & Williams, L. E. (2003). Transition metal transporters in plants. Journal of Experimental Botany, 54, 2601–2613.

    Article  CAS  Google Scholar 

  • Henry, I. M., Dilkes, B. P., Young, K., Watson, B., Wu, H., & Comai, L. (2005). Aneuploidy and genetic variation in the Arabidopsis thaliana triploid response. Genetics, 170, 1979–1988.

    Article  CAS  Google Scholar 

  • Henry, I. M., Dilkes, B. P., & Comai, L. (2007). Genetic basis for dosage sensitivity in Arabidopsis thaliana. PLoS Genetics, 3, e70.

    Article  Google Scholar 

  • Kerkeb, L., & Krämer, U. (2003). The role of free histidine in xylem loading of nickel in Alyssum lesbiacum and Brassica juncea. Plant Physiology, 131, 716–724.

    Article  CAS  Google Scholar 

  • Kohler, A., Blaudez, D., Chalot, M., & Martin, F. (2004). Cloning and expression of multiple metallothioneins from hybrid poplar. New Phytologist, 164, 83–93.

    Article  CAS  Google Scholar 

  • Kopittke, P., Blamey, F., Asher, C., & Menzies, N. (2010). Trace metal phytotoxicity in solution culture: a review. Journal of Experimental Botany, 61, 945–954.

    Article  CAS  Google Scholar 

  • Krämer, U., Talke, I. N., & Hanikenne, M. (2007). Transition metal transport. FEBS Letters, 581, 2263–2272.

    Article  Google Scholar 

  • Leavitt, S. W., Dueser, R. D., & Goodell, H. G. (1979). Plant regulation of essential and non-essential heavy metals. Journal of Applied Ecology, 16, 203–212.

    Article  CAS  Google Scholar 

  • Lonardo, S., Capuana, M., Arnetoli, M., Gabbrielli, R., & Gonnelli, C. (2011). Exploring the metal phytoremediation potential of three Populus alba L. clones using an in vitro screening. Environmental Science and Pollution Research, 18, 82–90.

    Article  CAS  Google Scholar 

  • Makarevitch, I., & Harris, C. (2010). Aneuploidy causes tissue-specific qualitative changes in global gene expression patterns in maize. Plant Physiology, 152, 927–938.

    Article  CAS  Google Scholar 

  • Makarevitch, I., Phillips, R. L., & Springer, N. M. (2008). Profiling expression changes caused by segmental aneuploidy in maize. BMC Genomics, 9, 7.

    Article  Google Scholar 

  • Matzke, M. A., Mette, M. F., Kanno, T., & Matzke, A. J. (2003). Does the intrinsic instability of aneuploid genomes have a causal role in cancer? Trends in Genetics, 19, 253–256.

    Article  CAS  Google Scholar 

  • Mehes-Smith, M., Nkongolo, K. K., & Kim, N. S. (2011). A comparative cytogenetic analysis of five pine species from North America, Pinus banksiana, P. contorta, P. monticola, P. resinosa and P. strobus. Plant Systematics and Evolution, 292, 153–164.

    Article  Google Scholar 

  • Mehes-Smith, M., Nkongolo, K. K., & Michael P. (2009). Assessing genetic diversity and structure of fragmented populations of eastern white pine (Pinus strobus) and western white pine (P. monticola) for conservation management. Journal of Plant Ecology, 2, 143–151.

  • Mehes-Smith, M., Nkongolo, K. K., Narendrula, R., & Cholewa, E. (2013). Mobility of heavy metals in plants and soil: a case study from a mining region in Canada. American Journal of Environmental Sciences, 9, 483–493.

    Article  CAS  Google Scholar 

  • Nishida, S., Tsuzuki, C., Kato, A., Aisu, A., Yoshida, J., & Mizuno, T. (2011). AtIRT1, the primary iron uptake transporter in the root, mediates excess nickel accumulation in Arabidopsis thaliana. Plant and Cell Physiology, 52, 1433–1442.

    Article  CAS  Google Scholar 

  • Nkongolo, K. K., & Klimaszewska, K. (1995). Cytological and molecular characterization of Larix decidua, L. leptolepis and L. eurolepis: identification of species specific chromosomes and enhancement of mitotic index. Theoretical and Applied Genetics, 90, 827–834.

    Article  CAS  Google Scholar 

  • Nkongolo, K. K., Deck, A., & Michael, P. (2001). Molecular and cytological analyses of Deschampsia cespitosa populations from Northern Ontario (Canada). Genome, 44, 818–825.

    Article  CAS  Google Scholar 

  • Nkongolo, K. K., Vaillancourt, A., Dobrzeniecka, S., Mehes, M., & Beckett, P. (2008). Metal content in soil and black spruce (Picea mariana) trees in the Sudbury region (Ontario, Canada): low concentration of nickel, cadmium and arsenic detected within smelter vicinity. Bulletin of Environmental Contamination and Toxicology, 80, 107–111.

    Article  CAS  Google Scholar 

  • Nkongolo, K. K., Spiers, G., Beckett, P., Narendrula, R., Theriault, G., Tran, A., & Kalubi, K. (2013). Long-term effects of liming on soil chemistry in stable and eroded upland areas in a mining region. Water, Air, and Soil Pollution, 224, 1–14.

    Article  CAS  Google Scholar 

  • Paschke, M. W., & Redente, E. F. (2002). Copper toxicity thresholds for important restoration grass species of the western United States. Environmental Toxicology and Chemistry, 21, 2692–2697.

    Article  CAS  Google Scholar 

  • Porter, E. K., & Peterson, P. L. (1977). Arsenic tolerance in grasses growing on mine waste. Environmental Pollution, 14, 255–265.

    Article  CAS  Google Scholar 

  • Pulford, I. D., & Watson, C. (2003). Phytoremediation of heavy metal-contaminated land by trees—a review. Environment International, 29, 529–540.

    Article  CAS  Google Scholar 

  • Qiu, Q., Ma, T., Hu, Q., Liu, B., Wu, Y., Zhou, H., Wang, Q., Wang, J., & Liu, J. (2011). Genome-scale transcriptome analysis of the desert poplar, Populus euphratica. Tree Physiology, 31, 452–461.

    Article  Google Scholar 

  • Rai, H. S., Mock, K. E., Richardson, B. A., Cronn, R. C., Hayden, K. J., Wright, J. W., Knaus, B. J., & Wolf, P. G. (2013). Transcriptome characterization and detection of gene expression differences in aspen (Populus tremuloides). Tree Genetics & Genomes, 9, 1031–1041.

    Article  Google Scholar 

  • Rascio, N., & Navari-Izzo, F. (2011). Heavy Metal hyperaccumulating plants: how and why they do it? And what makes them so interesting? Plant Science, 180, 169–180.

    Article  CAS  Google Scholar 

  • Reeves, R. D., & Baker, A. J. M. (2000). Metal-accumulating plants. In Raskin & Ensley (Eds.), Phytoremediation of toxic metals: Using plants to clean up the environment (pp. 193–229). New York: John Wiley & Sons, Inc.

    Google Scholar 

  • Roosens, N. H. C. J., Willems, G., & Saumitou-Laprade, P. (2008). Using Arabidopsis to explore zinc tolerance and hyperaccumulation. Trends in Plant Science, 13, 208–215.

    Article  CAS  Google Scholar 

  • Salt, D. E., Smith, R. D., & Raskin, I. (1998). Phytoremediation. Annual Review of Plant Physiology and Plant Molecular Biology, 49, 643–668.

    Article  CAS  Google Scholar 

  • Seregin, I. V., & Kozhevnikova, A. D. (2006). Physiological role of nickel and its toxic effects on higher plants. Russian Journal of Plant Physiology, 53, 257–277.

    Article  CAS  Google Scholar 

  • Singh, R., Singh, D., Kumar, N., Bhargava, S., & Barman, S. (2010). Accumulation and translocation of heavy metals in soil and plants from fly ash contamianted area. Journal of Environmental Biology, 31, 421–430.

    CAS  Google Scholar 

  • Solanki, R., & Dhankhar, R. (2011). Biochemical changes and adaptive strategies of plants under heavy metal stress. Biologia, 66, 195–204.

    Article  CAS  Google Scholar 

  • Unterbrunner, R., Puschenreiter, M., Sommer, P., Wieshammer, G., Tlustoš, P., Zupan, M., & Wenzel, W. W. (2007). Heavy metal accumulation in trees growing on contaminated sites in Central Europe. Environmental Pollution, 148, 107–114.

    Article  CAS  Google Scholar 

  • Wei, S., Zhou, Q., & Wang, X. (2005). Identification of weed plants excluding the uptake of heavy metals. Environment International, 31, 829–834.

    Article  Google Scholar 

  • Willems, G., Dräger, D. B., Courbot, M., Godé, C., Verbruggen, N., & Saumitou-Laprade, P. (2007). The genetic basis of zinc tolerance in the metallophyte Arabidopsis halleri ssp. halleri (Brassicaceae): an analysis of quantitative trait loci. Genetics, 176, 659–674.

    Article  CAS  Google Scholar 

  • Williams, C. G., Elsik, C. G., & Barnes, R. D. (2000). Microsatellite analysis of Pinus taeda L. in Zimbabwe. Heredity, 84, 261–268.

    Article  CAS  Google Scholar 

  • Wu, L., Bradshaw, A. D., & Thurman, D. A. (1975). The potential for evolution of heavy metal tolerance in plants. Heredity, 34, 165–187.

    Article  Google Scholar 

  • Zha, H., Jiang, R., Zhao, F., Vooijs, R., Schat, H., Barker, J., & McGrath, S. (2004). Co-segregation analysis of cadmium and zinc accumulation in Thlaspi caerulescens interecotypic crosses. New Phytologist, 163, 299–312.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Natural Sciences and Engineering Research Council of Canada (NSERC), Vale (Sudbury) and Glencore (Sudbury) for financial support to KKN to conduct this research, and to NSERC for a Fellowship to MMS. The Forest Resources & Soil Testing (FoReST) Laboratory, Faculty of Natural Resources Management (Lakehead University Center for Analytical Services (LUCAS)), Thunder Bay, Ontario, Canada are acknowledged for their assistance with the metal analyses. Dr. Peter Beckett is acknowledged for D. cespitosa site location and Ms. Ramya Narendrula and Mr. Paul Michael for technical assistance with sample processing and data analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kabwe K. Nkongolo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehes-Smith, M., Nkongolo, K.K. Physiological and Cytological Responses of Deschampsia cespitosa and Populus tremuloides to Soil Metal Contamination. Water Air Soil Pollut 226, 125 (2015). https://doi.org/10.1007/s11270-015-2382-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-015-2382-x

Keywords

Navigation