Skip to main content
Log in

Influence of Anthropogenic and Environmental Conditions on Polycyclic Aromatic Hydrocarbon Pollution Originating from Coal Ash Dumps

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Nikola Tesla B power plant (TENT-B), located on the Sava River in Obrenovac, 52 km west from the Serbian’s capital, Belgrade, is the second largest coal-fired power plant in the country, consisting of two blocks of 620 MW each. Samples of fresh coal ash obtained by coal combustion in TENT-B, as well as coal ash samples from the surface and 1-m depth of active, currently filled, and passive, previously filled and not currently used, cassettes, were taken from the coal ash dump. Ultrasonic extracts of the samples were analyzed using gas chromatography with mass selective detection (GC/MSD) in order to identify and quantify 16 priority polycyclic aromatic hydrocarbons (PAHs). Two PAH extraction mechanisms during coal ash dumping and storage processes are discussed and significant differences between them were established. PAH concentrations in the ash samples were compared statistically. Correlations between samples and sampling points were established, and leaching potential of samples was examined. Concentrations of PAHs can be reduced in coal ash sediments by environmental influences only after long time periods, and PAHs with two six-membered rings pose danger to underground waters, while PAHs with three rings pose danger to soil sediments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Achten, C., & Hofmann, T. (2009). Native polycyclic aromatic hydrocarbons (PAH) in coals—a hardly recognized source of environmental contamination. Science of the Total Environment, 407(8), 2461–2473.

    Article  CAS  Google Scholar 

  • Arditsoglou, A., Terzi, E., Kalaitzoglou, M., & Samara, C. (2003). A comparative study on the recovery of polycyclic aromatic hydrocarbons from fly ash and lignite coal. Environmental Science and Pollution Research, 10(6), 354–356.

    Article  CAS  Google Scholar 

  • Birgisdóttir, H., Gamst, J., & Christensen, T. H. (2007). Leaching of PAHs from hot mix asphalt pavements. Environmental Engineering Science, 24(10), 1409–1422.

    Article  Google Scholar 

  • Bowen, C., & De Groot, P. (2000). Health safety and the environment-aqueous leaching of PAHs from bitumen. Paper presented at the 2nd Eurasphalt & Eurbitume Congress, Barcelona,

  • Brandt, H. C. A., & de Groot, P. C. (2001). Aqueous leaching of polycyclic aromatic hydrocarbons from bitumen and asphalt. Water Research, 35(17), 4200–4207.

    Article  CAS  Google Scholar 

  • Camilleri, J., Sammut, M., & Montesin, F. E. (2006). Utilization of pulverized fuel ash in Malta. Waste Management, 26(8), 853–860.

    Article  CAS  Google Scholar 

  • Djinovic, J. M., & Popovic, A. R. (2007). In situ influence of coal ash dump on the quality of neighboring surface and ground waters by applying correlation statistic analysis. Fuel, 86(1–2), 218–226.

    Article  CAS  Google Scholar 

  • Drakonaki, S., Diamadopoulos, E., Vamvouka, D., & Lahaniatis, M. (1998). Leaching behavior of lignite fly ash. Journal of Environmental Science and Health, Part A, 33(2), 237–248.

    Article  Google Scholar 

  • Fällman, A. M., & Aurell, B. (1996). Leaching tests for environmental assessment of inorganic substances in wastes, Sweden. Science of the Total Environment, 178(1–3), 71–84.

    Article  Google Scholar 

  • Kalbe, U., Berger, W., Eckardt, J., & Simon, F.-G. (2008). Evaluation of leaching and extraction procedures for soil and waste. Waste Management, 28(6), 1027–1038.

    Article  CAS  Google Scholar 

  • Kalkreuth, W., Levandowski, J., Delgado, T., Scheffer, R., Maia, S., Peralba, M., et al. (2014). Evaluation of environmental impacts of the Figueira coal-fired power plant, Paraná, Brazil. Energy Exploration & Exploitation, 32(3), 423–470.

    Article  CAS  Google Scholar 

  • Laja, M., Urb, G., Irha, N., Reinik, J., & Kirso, U. (2005). Leaching behavior of ash fractions from oil shale combustion by fluidized bed and pulverized firing processes. Oil Shale, 22(4), 453–465.

    CAS  Google Scholar 

  • Liu, G., Niu, Z., Van Niekerk, D., Xue, J., & Zheng, L. (2008a). Polycyclic aromatic hydrocarbons (PAHs) from coal combustion: emissions, analysis, and toxicology. Reviews of Environmental Contamination and Toxicology, 192, 1–28.

    CAS  Google Scholar 

  • Liu, Y., Li, Y., Li, X., & Jiang, Y. (2008b). Leaching behavior of heavy metals and PAHs from MSWI bottom ash in a long-term static immersing experiment. Waste Management, 28(7), 1126–1136.

    Article  CAS  Google Scholar 

  • Maliszewska-Kordybach, B. (2005). Dissipation of polycyclic aromatic hydrocarbons in freshly contaminated soils—the effect of soil physicochemical properties and aging. Water, Air, & Soil Pollution, 168(1–4), 113–128.

    Article  CAS  Google Scholar 

  • Marusenko, Y., Herckes, P., & Hall, S. (2011). Distribution of polycyclic aromatic hydrocarbons in soils of an arid urban ecosystem. Water, Air, & Soil Pollution, 219(1–4), 473–487.

    Article  CAS  Google Scholar 

  • Mastral, A. M., & Callén, M. S. (2000). A review on polycyclic aromatic hydrocarbon (PAH) emissions from energy generation. Environmental Science & Technology, 34(15), 3051–3057.

    Article  CAS  Google Scholar 

  • Mitchell, D. J., Wild, S. R., & Jones, K. C. (1992). Arrested municipal solid waste incinerator fly ash as a source of heavy metals to the UK environment. Environmental Pollution, 76(1), 79–84.

    Article  CAS  Google Scholar 

  • Okedeyi, O., Nindi, M., Dube, S., & Awofolu, O. R. (2013). Distribution and potential sources of polycyclic aromatic hydrocarbons in soils around coal-fired power plants in South Africa. Environmental Monitoring and Assessment, 185(3), 2073–2082.

    Article  CAS  Google Scholar 

  • Oleszczuk, P., & Baran, S. (2005). Leaching of individual PAHs in soil varies with the amounts of sewage sludge applied and total organic carbon content. Polish Journal of Environmental Studies, 14(4), 491–500.

    CAS  Google Scholar 

  • Pergal, M. M., Relić, D., Tešić, Ž. L., & Popović, A. R. (2014). Leaching of polycyclic aromatic hydrocarbons from power plant lignite ash—influence of parameters important for environmental pollution. Environmental Science and Pollution Research, 21(5), 3435–3442.

    Article  CAS  Google Scholar 

  • Pergal, M. M., Tešić, Ž. L., & Popović, A. R. (2013). Polycyclic aromatic hydrocarbons: temperature driven formation and behavior during coal combustion in a coal-fired power plant. Energy & Fuels, 27(10), 6273–6278.

    Article  CAS  Google Scholar 

  • Petruzzelli, L., Celi, L., Cignetti, A., & Marsan, F. A. (2002). Influence of soil organic matter on the leaching of polycyclic aromatic hydrocarbons in soil. Journal of Environmental Science and Health. Part. B, 37(3), 187–199.

    Article  CAS  Google Scholar 

  • Popovic, A., & Djordjevic, D. (2009). pH-dependent leaching of dump coal ash—retrospective environmental analysis. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 31(17), 1553–1560.

    Article  CAS  Google Scholar 

  • Popovic, A., Djordjevic, D., & Polic, P. (2001). Trace and major element pollution originating from coal ash suspension and transport processes. Environment International, 26(4), 251–255.

    Article  CAS  Google Scholar 

  • Popovic, A., Djordjevic, D., & Relic, D. (2013). Associations and pollution potential of selected trace and major elements in filter lignite ash from the “Nikola Tesla A” power plant (Obrenovac, Serbia) (I)—leaching experiments. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 35(6), 529–537.

    Article  CAS  Google Scholar 

  • Popovic, A., Djordjevic, D., Relic, D., & Mihajlidi-Zelic, A. (2011). Speciation of trace and major elements from coal combustion products of Serbian Power Plants (II)—Obilic Power Plant. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 33(24), 2309–2318.

    Article  CAS  Google Scholar 

  • Popovic, A., Relic, D., & Djordjevic, D. (2015). Trace and major elements in ash of “Nikola Tesla A” power plant dump (III)—associations of elements in passive cassette ash. Energy Sources-Part A: Recovery, Utilization and Environmental Effects. doi:10.1080/15567036.2011.626495.

    Google Scholar 

  • Ribeiro, J., Silva, T., Filho, J. G. M., & Flores, D. (2012). Polycyclic aromatic hydrocarbons (PAHs) in burning and non-burning coal waste piles. Journal of Hazardous Materials, 199–200, 105–110.

    Article  Google Scholar 

  • Roskam, G. D., & Comans, R. N. J. (2009). Availability and leaching of polycyclic aromatic hydrocarbons: controlling processes and comparison of testing methods. Waste Management, 29(1), 136–142.

    Article  CAS  Google Scholar 

  • Ryan, J., Estefan, G., & Rashid, A. (2001). Soil and plant analysis laboratory manual. Allepo: International Center for Agricultural Research in the Dry Areas (ICARDA).

    Google Scholar 

  • Sahu, S. K., Bhangare, R. C., Ajmal, P. Y., Sharma, S., Pandit, G. G., & Puranik, V. D. (2009). Characterization and quantification of persistent organic pollutants in fly ash from coal fueled thermal power stations in India. Microchemical Journal, 92(1), 92–96.

    Article  CAS  Google Scholar 

  • Schwarzbauer, J. (2006). Organic contaminants in riverine and groundwater systems: aspects of the anthropogenic contribution: Springer Berlin Heidelberg.

  • Sun, L., Liao, X., Yan, X., Zhu, G., & Ma, D. (2014). Evaluation of heavy metal and polycyclic aromatic hydrocarbons accumulation in plants from typical industrial sites: potential candidate in phytoremediation for co-contamination. Environmental Science and Pollution Research, 21(21), 12494–12504.

    Article  CAS  Google Scholar 

  • Theis, T. L., & Gardner, K. H. (1990). Environmental assessment of ash disposal. Critical Reviews in Environmental Control, 20(1), 21–42.

    Article  CAS  Google Scholar 

  • Tobiszewski, M., & Namieśnik, J. (2012). PAH diagnostic ratios for the identification of pollution emission sources. Environmental Pollution, 162, 110–119.

    Article  CAS  Google Scholar 

  • Wild, S. R., & Jones, K. C. (1995). Polynuclear aromatic hydrocarbons in the United Kingdom environment: a preliminary source inventory and budget. Environmental Pollution, 88(1), 91–108.

    Article  CAS  Google Scholar 

  • Zand, A. D., Grathwohl, P., Nabibidhendi, G., & Mehrdadi, N. (2010). Determination of leaching behaviour of polycyclic aromatic hydrocarbons from contaminated soil by column leaching test. Waste Management & Research, 28(10), 913–920.

    Article  CAS  Google Scholar 

  • Zhang, Y., Li, F., & Wang, J. (2011). Determination of retardation effect of SOM on aqueous leaching of polycyclic aromatic hydrocarbons using confocal laser scanning microscope. International Journal of Environmental Research, 5(4), 999–1008.

    CAS  Google Scholar 

  • Zhang, Y., Wang, J., Ge, Z., Guo, G., & Gao, S. (2014). Survey of polycyclic aromatic hydrocarbons and nitrated polycyclic aromatic hydrocarbons in Jiaxing City, China. Environmental Earth Sciences, 71(3), 1095–1103.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was financially supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia (Projects No. 172001 and 172017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miodrag M. Pergal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pergal, M.M., Tešić, Ž.L. & Popović, A.R. Influence of Anthropogenic and Environmental Conditions on Polycyclic Aromatic Hydrocarbon Pollution Originating from Coal Ash Dumps. Water Air Soil Pollut 226, 35 (2015). https://doi.org/10.1007/s11270-015-2319-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-015-2319-4

Keywords

Navigation