Skip to main content

Advertisement

Log in

Immobilization of Ni and Cd in Soil by Biochar Derived From Unfertilized Dates

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Effect of biochar, derived from unfertilized dates, on the immobilization of Cd and Ni, in a sandy loam alkaline soil, was investigated. The biochar was applied to the soil columns at the rate of 0.5, 1, and 2 % (w/w) artificially polluted with 10 mg kg−1 Cd and 100 mg kg−1 Ni. After 1 month incubation of soil-biochar mixture under ambient conditions, the soil bulk density was reduced by 0.19 g cm−3 as compared with no biochar addition with increase in soil pH. A reduction of 53 % in the NH4NO3-extractable soil Ni was recorded as compared with the corresponding control without biochar addition. After incubation, the water-soluble Ni and NH4NO3-extractable soil Cd and Ni contents were significantly lower in all the biochar treatments than the control. A reduction of 53 % in the NH4NO3-extractable soil Ni was recorded as compared with the corresponding control. The biochar content separated from the incubated soil showed low concentrations of NH4NO3-extractable Cd and Ni. The total Ni and Cd contents recovered from biochar samples after incubation were 35.2 and 3.7 mg kg−1, respectively. Their contents in soil were substantially reduced by the incorporation of biochar amendment (114 to 57.2 mg kg−1 Ni, 9 to 5.6 kg−1 Cd) as compared with the no-biochar control. Therefore, addition of the biochar improved the soil physical properties and succeeded in immobilizing the studied metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Agusalim, M., Wani, M. H. U., & Syechfani, M. S. (2010). Rice husk biochar for rice based cropping system in acid soil: the characteristics of rice husk biochar and its influence on the properties of acid sulphate soils and rice growth in West Kalimantan. Indonesian Journal of Agricultural Science, 2, 39–47.

    Google Scholar 

  • Beesley, L., Moreno-Jimenez, E., Clement, R., Lepp, N., & Dickinson, N. (2010a). Mobility of As, Cd and Zn in a multicontaminated soil profile assessed by in-situ soil pore water sampling, column leaching and sequential extraction. Environmental Pollution, 158, 155–160.

    Article  CAS  Google Scholar 

  • Beesley, L., Moreno-Jimenez, E., & Gomez-Eyles, J. L. (2010b). Effects of biochar and green waste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil. Environmental Pollution, 158, 2282–2287.

    Article  CAS  Google Scholar 

  • Beesley, L., & Marmiroli, M. (2011). The immobilization and retention of soluble As, Cd and Zn by biochar. Environmental Pollution, 159, 474–480.

    Article  CAS  Google Scholar 

  • Beesley, L., Moreno-Jimenez, E., Gomez-Eyles, J. L., Harris, E., Robinson, B., & Tizmur, S. (2011). A review of biochars potential role in the remediation, revegetation and restoration of contaminated soils. Environmental Pollution, 159, 3269–3282.

    Article  CAS  Google Scholar 

  • Bolan, N. S., Adriano, D. C., & Curtin, D. (2003). Soil acidification and liming interactions with nutrient and heavy metal transformation and bioavailability. Advances in Agronomy, 78, 215–72.

    Article  CAS  Google Scholar 

  • Bradl, H. B. (2004). Adsorption of heavy metal ions on soils and soils constituents. Journal of Colloid and Interface Science, 277, 1–18.

    Article  CAS  Google Scholar 

  • Clemente, R., Almela, C., & Bernal, M. P. (2006). A remediation strategy based on active phytoremediation followed by natural attenuation in a soil contaminated by pyrite waste. Environmental Pollution, 14, 397–406.

    Article  Google Scholar 

  • Cheng, C. H., Lehmann, J., & Enelhard, M. H. (2008). Natural oxidation of black carbon in soils: changes in molecular form and surface charge along a climosequence. Geochimica et Cosmochimica Acta, 72, 1598–1610.

    Article  CAS  Google Scholar 

  • Chan, K. Y., Xu, Z., Lehmann, J., & Joseph, S. (2009). Biochar: nutrient properties and their enhancement. In Biochar for environmental management—science and technology (pp. 67–84). London: Earthscan.

    Google Scholar 

  • Dickinson, N. M., Baker, A. J. M., Doronila, A., Laidlaw, S., & Reeves, R. D. (2009). Phytoremediation of inorganics; realism and synergies. International Journal of Phytoremediation, 11, 97–114.

    Article  CAS  Google Scholar 

  • Downie, A., Crosky, A., & Munroe, P. (2009). Physical properties of biochar. In J. Lehmann & S. Joseph (Eds.), Biochar for environmental management—science and technology (pp. 13–32). London: Earthscan.

    Google Scholar 

  • Glaser, B., Balashov, E., Haumaier, L., Guggenberger, G., & Zech, W. (2000). Black carbon in density fractions of anthropogenic soils of the Brazilian Amazon region. Organic Geochemistry, 31, 669–678.

    Article  CAS  Google Scholar 

  • Harvey, O. R., Herbert, B. E., Rhue, R. D., & Kuo, L. J. (2011). Metal interactions at the biochar-water interface: energetics and structure-sorption relationships elucidated by flow adsorption microcalorimetry. Environmental Science and Technology, 45, 5550–5556.

    Article  CAS  Google Scholar 

  • Hass, A., Gonzalez, J. M., Lima, I. M., Godwin, H. W., Halvorson, J. J., & Boyer, D. G. (2012). Chicken manure biochar as liming and nutrient source for acid application. Journal of Environmental Quality, 41, 1096–1106.

    Article  CAS  Google Scholar 

  • Houben, D., Evrard, L., & Sonnet, P. (2013). Mobility, bioavailability and pH-dependent leaching of cadmium, zinc and lead in a contaminated soil amended with biochar. Chempsphere, 92, 1450–1457.

    Article  CAS  Google Scholar 

  • Inyang, M., Gao, B., Ding, W., Pullammanappallili, P., Zimmerman, A. R., & Cao, W. (2011). Enhanced lead absorption by biochar derived from anaerobically digested sugarcane bagasse. Separation Science and Technology, 46, 950–1956.

    Article  Google Scholar 

  • Inyang, M., Gao, B., Pullammanappallil, P., Ding, W., & Zimmerman, A. R. (2010). Biochar from anaerobically digested sugarcane bagasse. Bioresource Technology, 101, 8868–8872.

    Article  CAS  Google Scholar 

  • Jiang, T. Y., Jiang, J., Xu, R. K., & Li, Z. (2012). Adsorption of Pb(II) on variable charge soils amended with rice-straw derived biochar. Chemosphere, 89, 249–256.

    Article  CAS  Google Scholar 

  • Kiiya, W. W., Mwonga, S. M., Obura, R. K., & Ngugi, J. G. (2010). Effect of incorporation of legumes on selected soil chemical properties and weed growth in a potato cropping system at Timboroa, Kenya. African Journal of Agricultural Research, 5, 2392–2398.

    Google Scholar 

  • Kumpiene, J., Lagerkvist, A., & Maurice, C. (2008). Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments—a review. Waste Management, 28, 215–225.

    Article  CAS  Google Scholar 

  • Lehmann, L. (2007). Bioenergy in the black. Frontiers in Ecology and the Environment, 5, 381–387.

    Article  Google Scholar 

  • Lehman, J., Skjemstad, J., Sohi, S., Carter, J., Barson, M., Falloom, P., Coleman, K., Woodbury, P., & Krull, E. (2008). Australian climate/carbon cycle feedback reduced by soil black carbon. Nature Geoscience, 1, 832–835.

    Article  Google Scholar 

  • Lehmann, J., Rillig, M. C., Thies, J., Masiello, C. A., Hockaday, W. C., & Crowley, D. (2011). Biochar effects on soil biota—a review. Soil Biology and Biochemistry, 43, 1812–1836.

    Article  CAS  Google Scholar 

  • Mankasingh, U., Choi, P., & Ragnarsdottir, R. (2011). Biochar application in a tropical, agricultural region: a pilot scale study in Tamil Nadu, India. Applied Geochemistry, 26, 5218–5221.

    Article  Google Scholar 

  • McBride, M., Sauve, S., & Hendershot, W. (1997). Solubility control of Cu, Zn, Cd and Pb in contaminated soils. European Journal of Soil Science, 48, 337–346.

    Article  CAS  Google Scholar 

  • Mendez, A., Gomez, A., Paz-Ferreiro, J., & Gasco, G. (2012). Effects of sewage sludge biochar on plant metal availability after application to a Mediterranean soil. Chemosphere, 89, 1354–1359.

    Article  CAS  Google Scholar 

  • Mench, M., Lepp, N., Bert, V., Schwitzguebel, J.P., Gawronski, S.W., Schoder, P., & Vangronsveld, J. (2010). Successes and limitations of phytotechnologies at field scale. outcomes, assessment and outlook from COST action 859, Journal of Soils and Sediments, 10, 1039–1070.

  • Nguyen, B., Lehmann, J., Hockaday, W. C., Joseph, S., & Masiello, C. A. (2010). Temperature sensitivity of black carbon decomposition and oxidation. Environmental Science and Technology, 44, 3324–3331.

    Article  CAS  Google Scholar 

  • Nigussie, A., Kissi, E., Misganaw, M., & Ambaw, G. (2012). Effect of biochar application on soil properties and nutrient uptake of lettuces (Lactuca sativa) grown in chromium polluted soils. American-Eurasian Journal of Agriculture & Environmental Science, 12, 369–376.

    CAS  Google Scholar 

  • Novak, J. M., Busscher, W. J., Laird, D. L., Ahmedna, M., Watts, D. W., & Niandou, M. A. S. (2009). Impact of biochar amendment on fertility of a southeastern coastal plain soil. Soil Science, 1(74), 105–112.

    Article  Google Scholar 

  • Park, J. H., Choppala, G. K., Bolan, N. S., Chung, J. W., & Chuasavathi, T. (2011). Biochar reduces the bioavailability and phytotoxicity of heavy metals. Plant and Soil, 348, 439–451.

    Article  CAS  Google Scholar 

  • Peng, X., Ye, L. L., Wang, C. H., Zhou, H., & Sun, B. (2011). Temperature- and duration dependent rice straw-derived biochar: characteristics and its effects on soil properties of an ultisol in southern China. Soil & Tillage Research, 112, 159–166.

    Article  Google Scholar 

  • Uchimiya, M., Lima, M., Klasson, T., Chang, S., Wartelle, L. H., & Rodgers, J. E. (2010). Immobilization of heavy metal ions (CuII, CdII, NiII, PbII) by broiler litter derived biochars in water and soil. Journal of Agricultural and Food Chemistry, 58, 5538–5544.

    Article  CAS  Google Scholar 

  • Uchimiya, M., Chang, S., & Klasson, K. T. (2011). Screening biochar for heavy metal retention in soils: role of oxygen functional groups. Journal of Hazardous Materials, 190, 432–441.

    Article  CAS  Google Scholar 

  • Verheijen, V. F. G. A., Jeffery, S., Bastos, A. C., Van Der Velde, M., & Diafas, I. (2009). Biochar application to soils—a critical scientific review of effects on soil properties, processes and functions (EUR 24099 EN, (pp. 149)). Luxembourg: Office for the official publications of the European Communities.

    Google Scholar 

  • Walker, D.J., Clemente, R., & Bernal, M.P. (2004). Contrasting effects of manure and compost on soil pH, heavy metal availability and growth of Chenopodium album L. in a soil contaminated by pyretic mine waste. Chemosphere, 57, 215–224.

  • Wardle, D. A., Nilsson, M. C., & Zackrisson, O. (2008). Fire derived charcoal causes loss of forest humus. Science, 320, 629.

    Article  CAS  Google Scholar 

  • Wang, J., Pan, X., Liu, Y., Zhang, X., & Xiong, Z. (2012). Effects of biochar amendment in two soils on greenhouse gas emissions and crop production. Plant and Soil, 353, 1250–12533.

    Google Scholar 

  • Woolf, D., Amonette, J. E., Street-Perrott, F. A., Lehmann, J., & Joseph, S. (2010). Sustainable biochar to mitigate global climate change. Nature Communications, 1, 1–9.

    Article  Google Scholar 

  • Yuan, J.-H., Xu, R.-K., & Zhang, H. (2011). The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresource Technology, 102, 3488–3497.

    Article  CAS  Google Scholar 

  • Zhang, A., Bian, R., Pan, G., Cui, L., Hussain, Q., Li, L., Zheng, J., Zheng, J., Zhang, X., Han, X., & Yu, X. (2012). Effects of biochar amendment on soil quality, crop yield and greenhouse gas emission in a Chinese rice paddy: a field study of 2 consecutive rice growing cycles. Field Crops Research, 127, 153–160.

    Article  Google Scholar 

  • Zimmerman, A. R., Gao, B., & Ahn, M. A. (2011). Positive and negative carbon mineralization priming effects among a variety of biochar amended soils. Soil Biology and Biochemistry, 43, 1169–1179.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Barakat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ehsan, M., Barakat, M.A., Husein, D.Z. et al. Immobilization of Ni and Cd in Soil by Biochar Derived From Unfertilized Dates. Water Air Soil Pollut 225, 2123 (2014). https://doi.org/10.1007/s11270-014-2123-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-014-2123-6

Keywords

Navigation