Skip to main content
Log in

Multivariate Flood Frequency Analysis Using Bivariate Copula Functions

  • Published:
Water Resources Management Aims and scope Submit manuscript

Abstract

Multivariate analysis of flood frequency was used extensively in water resources research. Often the only flood peak or volume is analyzed with statistical distributions, but for a perfect and exact result, the four main characteristics of a flood event, as well as peak, volume, duration, and time-to-peak, are needed. For this reason, multivariate statistical approaches like copula functions developed. This research aims to define and use the bivariate copula (2-copula) probability distribution functions (PDF) for flood characteristics multivariate analysis. When the joint distribution of characteristics such as volume and peak is known, it is possible to define the probability of simultaneous occurrence of design volume and peak flow values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19(6):716–723

    Article  Google Scholar 

  • Archer D (1998) Flood frequency analysis. In: Encyclopedia of Hydrology and Lakes. Encyclopedia of Earth Science. Springer, Dordrecht

  • Ash RB (2008) Basic probability theory (Dover ed.), Mineola, N.Y.: Dover Publications. pp 66–69

  • Ayantobo O, Li Y, Song S (2019) Multivariate drought frequency analysis using four-variate symmetric and asymmetric Archimedean copula functions. Water Resour Manag 33:103–127

    Article  Google Scholar 

  • Box GEP, Cox D (1964) An analysis of transformation (with discussion). J Roy Statist Soc Ser B 26:211–246

    Google Scholar 

  • Brenchmann EC, Schepsmeier U (2013) Modeling dependence with C- and V-Vine copulas: the R package CDVine. J Statist Soft 52(3):1–27

    Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach (2nd ed.), Springer-Verlag

  • Chen L, Guo S, Yan B, Liu P, Fang B (2010) A new seasonal design flood method based on bivariate joint distribution of flood magnitude and date of occurrence. Hydrologic Sci 55(8):1264–1280

    Article  Google Scholar 

  • De Michele C, Salvadori G, Canossi M, Petaccia A, Rosso R (2005) Bivariate statistical approach to check adequacy of dam spillway. J Hydrol Eng 10(1):50–57

    Article  Google Scholar 

  • Dupuis DJ (2007) Using copulas in hydrology: benefits, cautions, and issues. J Hydrol Eng 12(4):381–393

    Article  Google Scholar 

  • Evans M, Rosenthal JS (2010) Probability and statistics: the science of uncertainty (2nd ed.), New York: W.H. Freeman and Co

  • Everitt BE (2006) The Cambridge dictionary of statistics (3rd ed.), Cambridge, UK: Cambridge University Press

  • Favre A-C, El Adlouni S, Perreault L, Thiémonge N, Bobée B (2004) Multivariate hydrological frequency analysis using copulas. Water Resour Res 40(1):W01101

    Article  Google Scholar 

  • Ganguli P, Reddy MJ (2013) Probabilistic assessment of flood risks using trivariate copulas. Theoretic Appl Climatol 111:341–360

    Article  Google Scholar 

  • Genest C, MacKay RJ (1986) Copules archimédiennes et familles de lois bidimensionnelles dont les marges sont données. Canad J Statat 14(2):145–159

    Article  Google Scholar 

  • Genest C, Favre A-C (2007) Everything you always wanted to know about copula modeling but were afraid to ask. J Hydrol Eng 12(4):347–368

    Article  Google Scholar 

  • Ghizzoni T, Roth G, Rudari R (2010) Multivariate skew-t approach to the design of accumulation risk scenarios for the flooding hazard. Adv in Water Resour 33:1243–1255

    Article  Google Scholar 

  • Goda K (2010) Statistical modeling of joint probability distribution using copula: Application to peak and permanent displacement seismic demands. Struc Safet 32:112–123

    Article  Google Scholar 

  • Grimaldi S, Serinaldi F (2006) Asymmetric copula in multivariate flood frequency analysis. Adv in Water Resour 29(8):1155–1167

    Article  Google Scholar 

  • Gumbel EJ (1960) Bivariate exponential distributions. J Americ Statist Assoc 55:698–707

    Article  Google Scholar 

  • Gumbel EJ, Mustafi CK (1967) Some analytical properties of bivariate extreme distributions. J Americ Statist Assoc 62:596–688

    Google Scholar 

  • Joe H (1997) Multivariate models and dependence concepts. Chapman and Hall, CRC, Boca Raton

    Book  Google Scholar 

  • Lorenz M, Bliefernicht J, Haese B, Kunstmann H (2018) Copula-based downscaling of daily precipitation fields. Hydrolog Proc 32:3479–3494

    Article  Google Scholar 

  • McElreath R (2016) Statistical rethinking: a Bayesian course with examples in R and Stan. CRC Press

    Google Scholar 

  • Nelsen RB (1999) An introduction to copulas. Springer

    Book  Google Scholar 

  • Nelsen RB (2006) An introduction to copulas. Springer

    Google Scholar 

  • Palynchuk BA, Guo Y (2011) A probabilistic description of rainstorms incorporating peak intensities. J Hydrology 409:71–80

    Article  Google Scholar 

  • Park KII (2018) Fundamentals of probability and stochastic processes with applications to communications, Springer

  • Razmkhah H (2018) Parameter uncertainty propagation in a Rainfall – Runoff model; Case study: Karoon III river basin. Water Resour 45(1):34–49

  • Razmkhah H, Saghafian B, AkhoundAli AM, Radmanesh F (2016a) Rainfall-Runoff modeling considering soil moisture accounting algorithm, case study: Karoon III river basin. Wat Resource 43(4):699–710

    Article  Google Scholar 

  • Razmkhah H, AkhoundAli AM, Radmanesh F, Saghafian B (2016b) Evaluation of rainfall spatial correlation effect on rainfall-runoff modeling uncertainty, considering 2-copula. Arab J Geoscience 9:323

    Article  Google Scholar 

  • Razmkhah H, AkhoundAli AM, Radmanesh F (2017) Correlated parameters uncertainty propagation in a Rainfall-Runoff model, considering 2-copula, case study: Karoon III river basin. Env Model Assess 22:503–521

    Article  Google Scholar 

  • Reddy MJ, Ganguli P (2012) Bivariate flood frequency analysis of upper Godavari river flow using Archimedean copulas. Water Resour Manag 26(14):3995–4018

    Article  Google Scholar 

  • Renard B, Lang M (2007) Use of a Gaussian copula for multivariate extreme value analysis: Some case studies in hydrology. Adv Water Resour 30:897–912

    Article  Google Scholar 

  • Salvadori G, De Michele C (2007) On the use of copulas in hydrology: Theory and practice. J Hydrol Eng 12(4):369–380

    Article  Google Scholar 

  • Schwarz GE (1978) Estimating the dimension of a model. Ann Stat 6(2):461–464

    Article  Google Scholar 

  • Serinaldi F, Grimaldi S (2007) Fully nested 3-copula: Procedure and application on hydrological data. J Hydrol Eng 12(4):420–430

    Article  Google Scholar 

  • Singh VP (1987) Hydrological frequency modeling. Reidal, Boston

    Book  Google Scholar 

  • Singh K, Singh VP (1991) Derivation of bivariate probability density functions with exponential marginals. Stoch Hydrol Hydraul 5:55–68

    Article  Google Scholar 

  • Sklar A (1959) Fonctions de repartition an dimensions et leurs marges. Publications De L’institut Statistique De L’universite De Paris 8:229–231

    Google Scholar 

  • Taddy M (2019) Business data science: Combining machine learning and economics to optimize, automate, and accelerate business decisions. McGraw-Hill, New York

    Google Scholar 

  • Vittal H, Singh J, Kumar P, Karmakar S (2015) A framework for multivariate data-based at-site flood frequency analysis: Essentiality of the conjugal application of parametric and nonparametric approaches. J Hydrol 525:658–675

    Article  Google Scholar 

  • Wang C, Chang N-B, Yeh G-T (2009) Copula-based flood frequency (COFF) analysis at the confluences of river systems. Hydrol Process 23(10):1471–1486

    Article  Google Scholar 

  • Wit E., Heuvel EVD, Romeijin JW (2012) All models are wrong...’: an introduction to model uncertainty. Statistica Neerlandica 66(3):217–236

  • Yue S (2001) A bivariate gamma distribution for use in multivariate flood frequency analysis. Hydrol Process 15(6):1033–1045

    Article  Google Scholar 

  • Yue S, Quarda T, Bobee B, Legendre P, Bruneau P (2002) Approach for describing statistical properties of flood hydrograph. J Hydrologic Eng 7(2):147–153

  • Yue K-X, Xiong L, Gottschalk L (2014) Derivation of low flow distribution functions using copulas. J Hydrology 508:273–288

    Article  Google Scholar 

  • Zening W, Chentao H, Wang H, Zhang Q (2020) Reservoir inflow synchronization analysis for four reservoirs on a multivariate copula model. Water Resour Manag 34:2753–2770

  • Zhong M, Zeng T, Jiang T, Wu H, Chen X, Hong Y (2021) A copula-based multivariate probability analysis for flash flood risk under the compound effect of soil moisture and rainfall. Water Resour Manag 35(4):1–16

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Homa Razmkhah: Conceptualization, data curation, methodology, analysis, interpretation of the results, software, visualization, and writing. Alireza Fararouie and Amin Rostami Ravari: Supervised the study and reviewed the whole content. All authors read and approved the manuscript.

Corresponding author

Correspondence to Homa Razmkhah.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Authors have agreed to submit the article.

Consent for Publication

Authors have agreed to submit the article in this Journal.

Conflicts of Interest

The authors have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Razmkhah, H., Fararouie, A. & Ravari, A.R. Multivariate Flood Frequency Analysis Using Bivariate Copula Functions. Water Resour Manage 36, 729–743 (2022). https://doi.org/10.1007/s11269-021-03055-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11269-021-03055-3

Keywords

Navigation