Skip to main content
Log in

Annual Rainfall Forecasting Using Hybrid Artificial Intelligence Model: Integration of Multilayer Perceptron with Whale Optimization Algorithm

  • Published:
Water Resources Management Aims and scope Submit manuscript

Abstract

Rainfall, as one of the key components of hydrological cycle, plays an undeniable role for accurate modelling of other hydrological components. Therefore, a precise forecasting of annual rainfall is of the high importance. In this regard, several studies have been tried to predict annual rainfall of different climate zones using machine learning and soft computing algorithms. This study investigates the application of an innovative hybrid method, namely Multilayer Perceptron-Whale Optimization Algorithm (MLP-WOA) to predict annual rainfall comparatively to the ordinary Multilayer Perceptron models (MLP). The models were developed by using 3-Input variables of annual rainfall at lag1, 2 and 3 corresponding to Pt-1, Pt-2 and Pt-3, respectively of two synoptic stations of Senegal (Fatick and Goudiry) in the time period of 1933–2013. 75% of the dataset were utilized for training and the other 25% for testing the studied models Accurateness of the mentioned models was examined using root mean squared error, correlation coefficient, and KlingGupta efficiency. Results showed that MLP-WOA3 and MLP3 using both Pt-1, Pt-2 and Pt-3 as inputs presented the most accurate forecasting in Fatick and Goudiry stations, respectively. In Fatick station, MLP-WOA3 decreased the RMSE value of MLP3 by 18.3% and increased the R and KGE values by 3.0% and 130%, respectively in testing period. But, in Goudiry station, MLP-WOA3 increased the RMSE value of MLP3 by 3.9% and increased the R and KGE values by 10.2% and 91% in testing period. Therefore, it can be realized that the MLP-WOA3 could not able to reduce the RMSE value of correspondent MLP model in Goudiry station. The conclusive results indicated that MLP-WOA slightly improved the accuracy of correspondent MLP models and may be recommended for annual rainfall forecasting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Samadianfard.

Ethics declarations

Conflict of Interest

The authors declare there is no conflict of interest to any party.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diop, L., Samadianfard, S., Bodian, A. et al. Annual Rainfall Forecasting Using Hybrid Artificial Intelligence Model: Integration of Multilayer Perceptron with Whale Optimization Algorithm. Water Resour Manage 34, 733–746 (2020). https://doi.org/10.1007/s11269-019-02473-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11269-019-02473-8

Keywords

Navigation