Skip to main content

Advertisement

Log in

A Multi-Model Nonstationary Rainfall-Runoff Modeling Framework: Analysis and Toolbox

  • Published:
Water Resources Management Aims and scope Submit manuscript

Abstract

We present a framework and toolbox for multi-model (one at a time) nonstationary modeling of rainfall-runoff (RR) transformation. The designed time-varying nature of the five available conceptual RR models in the toolbox allows for modeling processes that are nonstationary in essence. Nonstationary Rainfall-Runoff Toolbox (NRRT) delivers insights about underlying watershed processes through interactive tuning of model parameters to reflect temporal nonstationarities. The toolbox includes a number of performance metrics, along with visual graphics to evaluate the goodness-of-fit of the model simulations. Our analysis shows that the proposed time-varying RR modeling framework successfully captures the nonstationary behavior of the Wights catchment in Australia. A multi-model analysis of this catchment, that has endured deforestation, provides insights on the functionality of different conceptual modules of RR models, and their representation of the real-world.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aghakouchak A, Habib E (2010) Application of a conceptual hydrologic model in teaching hydrologic processes. Int J Eng Educ 26:963–973

    Google Scholar 

  • AghaKouchak A, Nakhjiri N, Habib E (2013) An educational model for ensemble streamflow simulation and uncertainty analysis. Hydrol Earth Syst Sci 17:445–452

    Article  Google Scholar 

  • Bergström S (1992) The HBV model: its structure and applications. Swedish Meteorological and Hydrological Institute, Report 4, Norrköping, Sweden

  • Bettenay E, Russel WRG, Hudson DR, Gilkes RJ (1980) A description of experimental catchments in the collie area, Western Australia, tech. Pap. 7. Land Resour. Manage., Perth

    Google Scholar 

  • Beven K, Freer J (2001) Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology. J Hydrol 249:11–29

    Article  Google Scholar 

  • Boyle DP (2001) Multicriteria calibration of hydrologic models, PhD Thesis, Department of Hydrology and Water Resources Engineering, The University of Arizona

  • Boyle DP, Gupta HV, Sorooshian S (2000) Toward improved calibration of hydrologic models: combining the strengths of manual and automatic methods. Water Resour Res 36:3663–3674

    Article  Google Scholar 

  • Brown AE, Podger P, Davidson A, Dowling T, Zhang L (2006) A methodology to predict the impact of changes in forest cover on flow duration curves. CSIRO Land and Water Science Report 8/06, Canberra

  • Byrd RH, Gilbert JC, Nocedal J (2000) A trust region method based on interior point techniques for nonlinear programming. Math Program 89:149–185

    Article  Google Scholar 

  • Cheng L, AghaKouchak A, Gilleland E, Katz RW (2014) Non-stationary extreme value analysis in a changing climate. Clim Chang 127:353–369

    Article  Google Scholar 

  • Efstratiadis A, Nalbantis I, Koutsoyiannis D (2015) Hydrological modelling of temporally-varying catchments: facets of change and the value of information. Hydrol Sci J 60:1438–1461

    Article  Google Scholar 

  • Gharari S, Hrachowitz M, Fenicia F, Savenije H (2013) An approach to identify time consistent model parameters: sub-period calibration. Hydrol Earth Syst Sci 17:149–161

    Article  Google Scholar 

  • Grenier Y (1983) Time-dependent ARMA modeling of nonstationary signals. IEEE Trans Acoust Speech Signal Process 31:899–911

    Article  Google Scholar 

  • Koutsoyiannis D (2006) Nonstationarity versus scaling in hydrology. J Hydrol 324:239–254

    Article  Google Scholar 

  • Koutsoyiannis D (2011) Hurst-Kolmogorov dynamics and uncertainty1. J Am Water Resour Assoc 47:481–495

    Article  Google Scholar 

  • Koutsoyiannis D, Montanari A (2015) Negligent killing of scientific concepts: the stationarity case. Hydrol Sci J 60:1174–1183

    Article  Google Scholar 

  • Le Moine N (2008) Le bassin versant de surface vu par le souterrain: une voie d’amélioration des performances et du réalisme des modèles pluie-débit?, Ph.D. thesis, Paris 6

  • Leclerc M, Ouarda TB (2007) Non-stationary regional flood frequency analysis at ungauged sites. J Hydrol 343:254–265

    Article  Google Scholar 

  • Lins HF, Cohn TA (2011) Stationarity: wanted dead or alive? J Am Water Resour Assoc 47:475–480

    Article  Google Scholar 

  • Marshall L, Sharma A, Nott D (2006) Modeling the catchment via mixtures: issues of model specification and validation. Water Resour Res 42:W11409

    Article  Google Scholar 

  • Milly PCD, Betancourt J, Falkenmark M, Hirsch RM, Kundzewicz ZW, Lettenmaier DP, Stouffer RJ (2008) Stationarity is dead: whither water management? Science 319:573–574. https://doi.org/10.1126/science.1151915, http://science.sciencemag.org/content/319/5863/573

    Article  Google Scholar 

  • Mohammadpour J, Scherer CW (2012) Control of linear parameter varying systems with applications. Springer Science & Business Media, Boston

    Book  Google Scholar 

  • Mroczkowski M, Raper PG, Kuczera G (1997) The quest for more powerful validation of conceptual catchment models. Water Resour Res 33:2325–2335

    Article  Google Scholar 

  • Nash JE et al (1960) A unit hydrograph study, with particular reference to British catchments. Proc Inst Civ Eng 17(3):249–282

  • Niedzwiecki M (2000) Identification of time-varying processes. Wiley, New York

    Google Scholar 

  • Ouarda T, El-Adlouni S (2011) Bayesian nonstationary frequency analysis of hydrological variables. J Am Water Resour Assoc 47:496–505

  • Pathiraja S, Marshall L, Sharma A, Moradkhani H (2016a) Detecting non-stationary hydrologic model parameters in a paired catchment system using data assimilation. Adv Water Resour 94:103–119

    Article  Google Scholar 

  • Pathiraja S, Marshall L, Sharma A, Moradkhani H (2016b) Hydrologic modeling in dynamic catchments: a data assimilation approach. Water Resour Res 52:3350–3372

    Article  Google Scholar 

  • Perrin C (2000) Vers une amélioration d’un modele pluie-débit au travers d’une approche comparative, Ph.D. thesis, Ph. D. Thesis, INP Grenoble/Cemagref Antony, France

  • Perrin C, Michel C, Andréassian V (2003) Improvement of a parsimonious model for streamflow simulation. J Hydrol 279:275–289

    Article  Google Scholar 

  • Pushpalatha R, Perrin C, Le Moine N, Mathevet T, Andréassian V (2011) A downward structural sensitivity analysis of hydrological models to improve low-flow simulation. J Hydrol 411:66–76

    Article  Google Scholar 

  • Richards JA (1983) Analysis of periodically time-varying systems. Springer Science & Business Media, New York

    Book  Google Scholar 

  • Sadegh M, Vrugt JA, Xu C, Volpi E (2015) The stationarity paradigm revisited: hypothesis testing using diagnostics, summary metrics, and DREAM (ABC). Water Resour Res 51:9207–9231

    Article  Google Scholar 

  • Sadegh M, Ragno E, AghaKouchak A (2017) Multivariate copula analysis toolbox (MvCAT): describing dependence and underlying uncertainty using a Bayesian framework. Water Resour Res 53(6):5166–5183

    Article  Google Scholar 

  • Sadegh M, Majd MS, Hernandez J, Haghighi AT (2018) The quest for hydrological signatures: effects of data transformation on Bayesian inference of watershed models. Water Resour Manag 32(5):1867–1881

    Article  Google Scholar 

  • Salas JD, Obeysekera J (2013) Revisiting the concepts of return period and risk for nonstationary hydrologic extreme events. J Hydrol Eng 19:554–568

    Article  Google Scholar 

  • Schaake JC, Koren VI, Duan Q-Y, Mitchell K, Chen F (1996) Simple water balance model for estimating runoff at different spatial and temporal scales. J Geophys Res Atmos 101:7461–7475

    Article  Google Scholar 

  • Singh VP, Woolhiser DA (2002) Mathematical modeling of watershed hydrology. J Hydrol Eng 7:270–292

    Article  Google Scholar 

  • Waltz RA, Morales JL, Nocedal J, Orban D (2006) An interior algorithm for nonlinear optimization that combines line search and trust region steps. Math Program 107:391–408

    Article  Google Scholar 

  • Westra S, Thyer M, Leonard M, Kavetski D, Lambert M (2014) A strategy for diagnosing and interpreting hydrological model nonstationarity. Water Resour Res 50:5090–5113

    Article  Google Scholar 

Download references

Acknowledgements

This study was partially supported by the United States National Science Foundation Award No. CMMI −1635797, ARO’s Environmental Sciences Division Award No. W911NF-14-1-0684, and National Oceanic and Atmospheric Administration (NOAA) Award No. NA14OAR4310222.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir AghaKouchak.

Ethics declarations

Conflict of Interest

None.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 5053 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadegh, M., AghaKouchak, A., Flores, A. et al. A Multi-Model Nonstationary Rainfall-Runoff Modeling Framework: Analysis and Toolbox. Water Resour Manage 33, 3011–3024 (2019). https://doi.org/10.1007/s11269-019-02283-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11269-019-02283-y

Keywords

Navigation