Skip to main content
Log in

Satellite Soil Moisture: Review of Theory and Applications in Water Resources

  • Published:
Water Resources Management Aims and scope Submit manuscript

Abstract

Soil moisture (SM) plays an important role in the water and energy exchanges that occur in the terrestrial surface. Soil moisture can be retrieved at a larger scale by using the visible and InfraRed (IR) bands as well as through the microwave remote sensing. Because of very high importance of SM for variety of applications, there are now two dedicated microwave satellites in the Earth’s orbit for soil moisture retrieval from space. The first, Soil Moisture and Ocean Salinity (SMOS) satellite has been launched by the European Space Agency in November 2009 and second is Soil Moisture Active and Passive (SMAP) launched by the National Aeronautics and Space Administration (NASA) in January 2015. In this review, brief background of soil moisture retrieval algorithms are presented with different applications in the area of water resources. The first section provides the introduction of the soil moisture, presents several in situ techniques for measurement of soil moisture and soil moisture retrieval algorithms from visible/IR and microwave remote sensing. Section 2 describes the satellite soil moisture applications in water resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Al-Shrafany D, Rico-Ramirez M, Han D (2012) Calibration of roughness parameters using rainfall runoff water balance for satellite soil moisture retrieval. J Hydrol Eng 17:704–714

    Article  Google Scholar 

  • Al-Shrafany D, Rico-Ramirez MA, Han D, Bray M (2013) Comparative assessment of soil moisture estimation from land surface model and satellite remote sensing based on catchment water balance. Meteorol Appl. doi:10.1002/met.1357

  • Andersson L, Harding RJ (1991) Soil-moisture deficit simulations with models of varying complexity for forest and grassland sites in Sweden and the U.K. Water Resour Manag 5(1):25–46

    Article  Google Scholar 

  • Argyrokastritis I, Kargas G, Kerkides P (2009) Simulation of soil moisture profiles using K(h) from coupling experimental retention curves and one-step outflow data. Water Resour Manag 23(15):3255–3266

    Article  Google Scholar 

  • Behari J (2005) Microwave dielectric behavior of wet soils, 8. Anamaya Publishers, New Delhi

    Book  Google Scholar 

  • Birchak J, Gardner C, Hipp J, Victor J (1974) High dielectric constant microwave probes for sensing soil moisture. Proc IEEE 62(1):93–98

    Article  Google Scholar 

  • Bowers S, Smith S (1972) Spectrophotometric determination of soil water content. Soil Sci Soc Am J 36(6):978–980

    Article  Google Scholar 

  • Brocca L et al (2010) Improving runoff prediction through the assimilation of the ASCAT soil moisture product. Hydrol Earth Syst Sci 14(10):1881–1893

    Article  Google Scholar 

  • Buckman HO, Brady NC (1922) The nature and properties of soils. Prentice Hall, New Jersey

  • Cai G et al (2007) Soil moisture retrieval from MODIS data in northern China plain using thermal inertia model. Int J Remote Sens 28(16):3567–3581

    Article  Google Scholar 

  • Carlson TN (1986) Regional-scale estimates of surface moisture availability and thermal inertia using remote thermal measurements. Remote Sens Rev 1(2):197–247

    Article  Google Scholar 

  • Carlson T (2007) An overview of the" triangle method" for estimating surface evapotranspiration and soil moisture from satellite imagery. Sensors 7(8):1612–1629

    Article  Google Scholar 

  • Carlson TN, Perry EM, Schmugge TJ (1990) Remote estimation of soil moisture availability and fractional vegetation cover for agricultural fields. Agric For Meteorol 52(1):45–69

    Article  Google Scholar 

  • Carlson TN, Gillies RR, Perry EM (1994) A method to make use of thermal infrared temperature and NDVI measurements to infer surface soil water content and fractional vegetation cover. Remote Sens Rev 9(1–2):161–173

    Article  Google Scholar 

  • Cellier P, Richard G, Robin P (1996) Partition of sensible heat fluxes into bare soil and the atmosphere. Agric For Meteorol 82(1):245–265

    Article  Google Scholar 

  • Chauhan N, Miller S, Ardanuy P (2003) Spaceborne soil moisture estimation at high resolution: a microwave-optical/IR synergistic approach. Int J Remote Sens 24(22):4599–4622

    Article  Google Scholar 

  • Choudhury B, Schmugge TJ, Chang A, Newton R (1979) Effect of surface roughness on the microwave emission from soils. J Geophys Res 84(C9):5699–5706

    Article  Google Scholar 

  • Clark CA, Arritt PW (1995) Numerical simulations of the effect of soil moisture and vegetation cover on the development of deep convection. J Appl Meteorol 34(9):2029–2045

    Article  Google Scholar 

  • Crow W, Bolten J (2007) Estimating precipitation errors using spaceborne surface soil moisture retrievals. Geophys Res Lett 34(8):L08403

    Article  Google Scholar 

  • Crow W, Ryu D (2009) A new data assimilation approach for improving runoff prediction using remotely-sensed soil moisture retrievals. Hydrol Earth Syst Sci 13(1):1–16

    Article  Google Scholar 

  • Crow WT, Huffman GJ, Bindlish R, Jackson TJ (2009) Improving satellite-based rainfall accumulation estimates using spaceborne surface soil moisture retrievals. J Hydrometeorol 10(1):199–212

    Article  Google Scholar 

  • Dai A, Trenberth KE, Qian T (2004) A global dataset of palmer drought severity index for 1870-2002: relationship with soil moisture and effects of surface warming. J Hydrometeorol 5(6):1117–1130

    Article  Google Scholar 

  • Dalal R, Henry R (1986) Simultaneous determination of moisture, organic carbon, and total nitrogen by near infrared reflectance spectrophotometry. Soil Sci Soc Am J 50(1):120–123

    Article  Google Scholar 

  • Davenport IJ, Fernández-Gálvez J, Gurney RJ (2005) A sensitivity analysis of soil moisture retrieval from the tau-omega microwave emission model. Geosci Remote Sens, IEEE Trans 43(6):1304–1316

    Article  Google Scholar 

  • Davidson MW et al (2000) On the characterization of agricultural soil roughness for radar remote sensing studies. Geosci Remote Sens, IEEE Trans 38(2):630–640

    Article  Google Scholar 

  • De Jeu R et al (2008) Global soil moisture patterns observed by space borne microwave radiometers and scatterometers. Surv Geophys 29(4–5):399–420

    Article  Google Scholar 

  • Deardorff J (1978) Efficient prediction of ground surface temperature and moisture, with inclusion of a layer of vegetation. J Geophys Res: Oceans 83(C4):1889–1903

    Article  Google Scholar 

  • Dobson MC, Ulaby FT, Hallikainen MT, El-Rayes MA (1985) Microwave dielectric behavior of wet soil-part II: dielectric mixing models. Geosci Remote Sens, IEEE Trans GE-23(1):35–46

    Article  Google Scholar 

  • Drusch M (2007) Initializing numerical weather prediction models with satellite-derived surface soil moisture: data assimilation experiments with ECMWF's integrated forecast system and the TMI soil moisture data set. J Geophys Res Atmos 112(D3)

  • Dupigny-Giroux L-AL (2007) Using AirMISR data to explore moisture-driven land use–land cover variations at the Howland Forest, Maine—a case study. Remote Sens Environ 107(1):376–384

    Article  Google Scholar 

  • Dupigny-Giroux L-A, Lewis JE (1999) A moisture index for surface characterization over a semiarid area. PE RS- Photogramm Eng Remote Sens 65(8):937–945

    Google Scholar 

  • Engman ET (1990) Progress in microwave remote sensing of soil moisture. Can J Remote Sens 16(3):6–14

    Article  Google Scholar 

  • Entekhabi D et al (2010) The soil moisture active passive (SMAP) mission. Proc IEEE 98(5):704–716

    Article  Google Scholar 

  • Escorihuela M, Chanzy A, Wigneron J, Kerr Y (2010) Effective soil moisture sampling depth of L-band radiometry: a case study. Remote Sens Environ 114(5):995–1001

    Article  Google Scholar 

  • Evans RO, Sneed RE (1991) Measuring soil water for irrigation scheduling: Monitoring methods and devices. AG-North Carolina Agricultural Extension Service, North Carolina State University

  • Feddes RA, Kowalik PJ, Zaradny H (1978) Simulation of field water use and crop yield. Centre for Agricultural Publishing and Documentation

  • Franz T, Zreda M, Rosolem R, Ferre T (2012) A universal calibration function for determination of soil moisture with cosmic-ray neutrons. Hydrol Earth Syst Sci Discuss 9:10303–10322

    Article  Google Scholar 

  • George B, Shende S, Raghuwanshi N (2000) Development and testing of an irrigation scheduling model. Agric Water Manag 46(2):121–136

    Article  Google Scholar 

  • Ghali GS (1989) Multi-dimensional analysis of soil moisture dynamics in trickle irrigated fields. I: mathematical modelling. Water Resour Manag 3(1):11–34

    Article  Google Scholar 

  • Gillies R, Kustas W, Humes K (1997) A verification of the'triangle'method for obtaining surface soil water content and energy fluxes from remote measurements of the normalized difference vegetation index (NDVI) and surface e. Int J Remote Sens 18(15):3145–3166

    Article  Google Scholar 

  • Goward SN, Xue Y, Czajkowski KP (2002) Evaluating land surface moisture conditions from the remotely sensed temperature/vegetation index measurements: an exploration with the simplified simple biosphere model. Remote Sens Environ 79(2):225–242

    Article  Google Scholar 

  • Halcrow HG (1949) Actuarial structures for crop insurance. J Farm Econ 31(3):418–443

    Article  Google Scholar 

  • Hallikainen MT, Ulaby FT, Dobson MC, El-Rayes MA, Wu L-K (1985) Microwave dielectric behavior of wet soil-part 1: empirical models and experimental observations. Geosci Remote Sens, IEEE Trans GE-23(1):25–34

    Article  Google Scholar 

  • Heathman GC, Starks PJ, Ahuja LR, Jackson TJ (2003) Assimilation of surface soil moisture to estimate profile soil water content. J Hydrol 279(1):1–17

    Article  Google Scholar 

  • Heggen RJ (2001) Normalized antecedent precipitation index. J Hydrol Eng 6(5):377–381

    Article  Google Scholar 

  • Howard AD (1967) Drainage analysis in geologic interpretation: a summation. AAPG Bull 51(11):2246–2259

    Google Scholar 

  • Huang J, van den Dool HM, Georgarakos KP (1996) Analysis of model-calculated soil moisture over the United States (1931-1993) and applications to long-range temperature forecasts. J Clim 9(6):1350–1362

    Article  Google Scholar 

  • Islam T, Srivastava PK, Dai Q, Gupta M, Zhuo L (2015) An introduction to factor analysis for radio frequency interference detection on satellite observations. Meteorol Appl 22(3):436–443

    Article  Google Scholar 

  • Jackson TJ, O'Neill PE (1990) Attenuation of soil microwave emission by corn and soybeans at 1.4 and 5 GHz. Geosci Remote Sens, IEEE Trans 28(5):978–980

    Article  Google Scholar 

  • Jackson TJ, Schmugge TJ (1989) Passive microwave remote sensing system for soil moisture: some supporting research. Geosci Remote Sens, IEEE Trans 27(2):225–235

    Article  Google Scholar 

  • Jackson TJ, Schmugge TJ, Wang JR (1982) Passive microwave sensing of soil moisture under vegetation canopies. Water Resour Res 18(4):1137–1142

    Article  Google Scholar 

  • Jackson T, Schmugge J, Engman E (1996) Remote sensing applications to hydrology: soil moisture. Hydrol Sci J 41(4):517–530

    Article  Google Scholar 

  • Jansson P-E (1998) Simulating model for soil water and heat conditions. Institutionen för markvetenskap, Avdelningen för lantbrukets hydroteknik, Sveriges lantbruksuniversitet, Uppsala

    Google Scholar 

  • Johannsen CJ (1970) The detection of available soil moisture by remote sensing techniques.

  • Kerkides P, Poulovassilis A, Argyrokastritis I, Elmaloglou S (1997) Comparative evaluation of analytic solutions in predicting soil moisture profiles in vertical one-dimensional infiltration under ponded and constant flux boundary conditions. Water Resour Manag 11(5):323–338

    Article  Google Scholar 

  • Kerr YH et al (2001) Soil moisture retrieval from space: the soil moisture and Ocean Salinity (SMOS) mission. Geosci Remote Sens, IEEE Trans 39(8):1729–1735

    Article  Google Scholar 

  • Kerr YH et al (2012) The SMOS soil moisture retrieval algorithm. IEEE Trans Geosci Remote Sens 50(5):1384–1403

    Article  Google Scholar 

  • Kerr YH, Wigneron JP, Al Bitar A, Mialon A, Srivastava PK (2016) Chapter 1 - Soil Moisture from Space: Techniques and Limitations, Satellite Soil Moisture Retrieval. Elsevier, pp 3–27

  • Kneese AV, Bower BT (1984) Managing water quality: economics, technology, institutions. RFF Press, Baltimore

  • Koster RD et al (2004) Regions of strong coupling between soil moisture and precipitation. Science 305(5687):1138–1140

    Article  Google Scholar 

  • Kustas W, Norman J (1996) Use of remote sensing for evapotranspiration monitoring over land surfaces. Hydrol Sci J 41(4):495–516

    Article  Google Scholar 

  • Li S, Liang W, Zhang W, Liu Q (2016) Response of soil moisture to hydro-meteorological variables under different precipitation gradients in the Yellow River basin. Water Resour Manag 30(6):1867–1884

    Article  Google Scholar 

  • Liu W et al (2003) Evaluation of methods for soil surface moisture estimation from reflectance data. Int J Remote Sens 24(10):2069–2083

    Article  Google Scholar 

  • Lobell DB, Asner GP (2002) Moisture effects on soil reflectance. Soil Sci Soc Am J 66(3):722–727

    Article  Google Scholar 

  • Loew A, Ludwig R, Mauser W (2006) Derivation of surface soil moisture from ENVISAT ASAR wide swath and image mode data in agricultural areas. Geosci Remote Sens, IEEE Trans 44(4):889–899

    Article  Google Scholar 

  • Mallick K, Bhattacharya BK, Patel N (2009) Estimating volumetric surface moisture content for cropped soils using a soil wetness index based on surface temperature and NDVI. Agric For Meteorol 149(8):1327–1342

    Article  Google Scholar 

  • Massman W (1992) A surface energy balance method for partitioning evapotranspiration data into plant and soil components for a surface with partial canopy cover. Water Resour Res 28(6):1723–1732

    Article  Google Scholar 

  • Merlin O, Walker JP, Panciera R, Escorihuela MJ, Jackson TJ (2009) Assessing the SMOS soil moisture retrieval parameters with high-resolution NAFE'06 data. Geosci Remote Sens Lett, IEEE 6(4):635–639

    Article  Google Scholar 

  • Moran M, Clarke T, Inoue Y, Vidal A (1994) Estimating crop water deficit using the relation between surface-air temperature and spectral vegetation index. Remote Sens Environ 49(3):246–263

    Article  Google Scholar 

  • Morbidelli R, Corradini C, Saltalippi C, Brocca L (2012) Initial soil water content as input to field-scale infiltration and surface runoff models. Water Resour Manag 26(7):1793–1807

    Article  Google Scholar 

  • Norbiato D, Borga M, Degli Esposti S, Gaume E, Anquetin S (2008) Flash flood warning based on rainfall thresholds and soil moisture conditions: an assessment for gauged and ungauged basins. J Hydrol 362(3):274–290

    Article  Google Scholar 

  • Norman JM, Kustas WP, Humes KS (1995) Source approach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface temperature. Agric For Meteorol 77(3):263–293

    Article  Google Scholar 

  • Oh Y, Kay YC (1998) Condition for precise measurement of soil surface roughness. Geosci Remote Sens, IEEE Trans 36(2):691–695

    Article  Google Scholar 

  • Owe M, de Jeu R, Walker J (2001) A methodology for surface soil moisture and vegetation optical depth retrieval using the microwave polarization difference index. Geosci Remote Sens, IEEE Trans 39(8):1643–1654

    Article  Google Scholar 

  • Pal M, Maity R, Dey S (2016) Statistical Modelling of vertical soil moisture profile: coupling of memory and forcing. Water Resour Manag 30(6):1973–1986

    Article  Google Scholar 

  • Panciera R et al (2009) Evaluation of the SMOS L-MEB passive microwave soil moisture retrieval algorithm. Remote Sens Environ 113(2):435–444

    Article  Google Scholar 

  • Peters-Lidard C, Zion M, Wood E (1997) A soil-vegetation-atmosphere transfer scheme for modeling spatially variable water and energy balance processes. J Geophys Res 102(D4):4303–4324

    Article  Google Scholar 

  • Piles Guillem M (2010) Multiscale soil moisture retrievals from microwave remote sensing observations.

  • Pratt D, Ellyett C (1979) The thermal inertia approach to mapping of soil moisture and geology. Remote Sens Environ 8(2):151–168

    Article  Google Scholar 

  • Price JC (1980) The potential of remotely sensed thermal infrared data to infer surface soil moisture and evaporation. Water Resour Res 16(4):787–795

    Article  Google Scholar 

  • Qi S-H, Wang C-Y, Niu Z (2003) Evaluating soil moisture status in China using the temperature/vegetation dryness index (TVD1). J Remote Sens-Beijing 7(5):420–427

    Google Scholar 

  • Qiu Z et al (2017) Assessing soil moisture patterns using a soil topographic index in a humid region. Water Resour Manag 31(7):2243–2255

    Article  Google Scholar 

  • Ragab R, Rosier P, Dixon A, Bromley J, Cooper J (2003) Experimental study of water fluxes in a residential area: 2. Road infiltration, runoff and evaporation. Hydrol Process 17(12):2423–2437

    Article  Google Scholar 

  • Reichle RH, Koster RD (2005) Global assimilation of satellite surface soil moisture retrievals into the NASA catchment land surface model. Geophys Res Lett 32:L02404

  • Saleh K et al (2007) Estimates of surface soil moisture under grass covers using L-band radiometry. Remote Sens Environ 109(1):42–53

    Article  Google Scholar 

  • Sandholt I, Rasmussen K, Andersen J (2002) A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status. Remote Sens Environ 79(2):213–224

    Article  Google Scholar 

  • Selirio I, Brown D (1979) Soil moisture-based simulation of forage yield. Agric Meteorol 20(2):99–114

    Article  Google Scholar 

  • Smith JM (1986) Mathematical modelling and digital simulation for engineers and scientists. John Wiley & Sons, Inc., New York

  • Srivastava PK (2013) Soil moisture estimation from SMOS satellite and mesoscale model for hydrological applications, PhD Thesis, University of Bristol, UK

  • Srivastava PK, Han D, Ramirez MR, Islam T (2013a) Machine learning techniques for downscaling SMOS satellite soil moisture using MODIS land surface temperature for hydrological application. Water Resour Manag 27(8):3127–3144

    Article  Google Scholar 

  • Srivastava PK, Han D, Rico-Ramirez MA, Al-Shrafany D, Islam T (2013b) Data fusion techniques for improving soil moisture deficit using SMOS satellite and WRF-NOAH land surface model. Water Resour Manag 27(15):5069–5087

    Google Scholar 

  • Srivastava PK, Han D, Rico Ramirez MA, Islam T (2013c) Appraisal of SMOS soil moisture at a catchment scale in a temperate maritime climate. J Hydrol 498:292-304

  • Srivastava PK et al (2014) Assessment of SMOS soil moisture retrieval parameters using tau–omega algorithms for soil moisture deficit estimation. J Hydrol 519(Part A):574–587

    Article  Google Scholar 

  • Srivastava P, O'Neill P, Cosh M, Lang R, Joseph A (2015a) Evaluation of Radar Vegetation Indices for Vegetation Water Content Estimation Using Data from a Ground-Based SMAP Simulator. TU2.Y1: Soil Moisture Algorithms and Downscaling. IGARSS, Milan

    Google Scholar 

  • Srivastava PK et al (2015b) Performance evaluation of WRF-Noah land surface model estimated soil moisture for hydrological application: synergistic evaluation using SMOS retrieved soil moisture. J Hydrol 529:200–212

    Article  Google Scholar 

  • Srivastava PK et al (2015c) Evaluation of dielectric mixing models for passive microwave soil moisture retrieval using data from ComRAD ground-based SMAP simulator. IEEE J Sel Top in Appl Earth Obs Remote Sens 8(9):4345–4354

    Article  Google Scholar 

  • Srivastava PK, Pandey V, Suman S, Gupta M, Islam T (2016a) Chapter 2 - Available Data Sets and Satellites for Terrestrial Soil Moisture Estimation, Satellite Soil Moisture Retrieval. Elsevier, pp 29–44

  • Srivastava PK, Petropoulo GP, Kerr YH (2016b) Satellite Soil Moisture Retrieval: Techniques and Applications. In: Prashant K Srivastava, George P Petropoulos, Yann H Kerr (eds) Volume I. Elsevier Press, pp 440

  • Stisen S, Sandholt I, Nørgaard A, Fensholt R, Jensen KH (2008) Combining the triangle method with thermal inertia to estimate regional evapotranspiration—applied to MSG-SEVIRI data in the Senegal River basin. Remote Sens Environ 112(3):1242–1255

    Article  Google Scholar 

  • Stuff R, Dale R (1978) A soil moisture budget model accounting for shallow water table influences. Soil Sci Soc Am J 42(4):637–643

    Article  Google Scholar 

  • Taylor SA (1952) Use of mean soil moisture tension to evaluate the effect of soil moisture on crop yields. Soil Sci 74(3):217–226

    Article  Google Scholar 

  • Tombul M (2007) Mapping field surface soil moisture for hydrological modeling. Water Resour Manag 21(11):1865–1880

    Article  Google Scholar 

  • Ulaby FT, Batlivala PP, Dobson MC (1978) Microwave backscatter dependence on surface roughness, soil moisture, and soil texture: part I-bare soil. Geosci Electron, IEEE Trans 16(4):286–295

    Article  Google Scholar 

  • Ulaby FT, Bradley GA, Dobson MC (1979) Microwave backscatter dependence on surface roughness, soil moisture, and soil texture: part II-vegetation-covered soil. Geosci Electron, IEEE Trans 17(2):33–40

    Article  Google Scholar 

  • Vinnikov KY et al (1999) Satellite remote sensing of soil moisture in Illinois, United States. J Geophys Res: Atmos (1984–2012) 104(D4):4145–4168

    Article  Google Scholar 

  • Wan Z, Wang P, Li X (2004) Using MODIS land surface temperature and normalized difference vegetation index products for monitoring drought in the southern Great Plains, USA. Int J Remote Sens 25(1):61–72

    Article  Google Scholar 

  • Wang J, Choudhury B (1981) Remote sensing of soil moisture content, over bare field at 1.4 GHz frequency. J Geophys Res: Oceans (1978–2012) 86(C6):5277–5282

    Article  Google Scholar 

  • Wang L, Qu JJ (2007) NMDI: a normalized multi-band drought index for monitoring soil and vegetation moisture with satellite remote sensing. Geophys Res Lett 34(20):L20405

    Article  Google Scholar 

  • Wang L, Qu JJ (2009) Satellite remote sensing applications for surface soil moisture monitoring: a review. Front Earth Sci China 3(2):237–247

    Article  Google Scholar 

  • Wang JR, O'Neill PE, Jackson TJ, Engman ET (1983) Multifrequency measurements of the effects of soil moisture, soil texture, and surface roughness. Geosci Remote Sens, IEEE Trans GE-21(1):44–51

    Article  Google Scholar 

  • Wang C, Qi S, Niu Z, Wang J (2004) Evaluating soil moisture status in China using the temperature-vegetation dryness index (TVDI). Can J Remote Sens 30(5):671–679

    Article  Google Scholar 

  • Weidong L et al (2002) Relating soil surface moisture to reflectance. Remote Sens Environ 81(2):238–246

    Article  Google Scholar 

  • Westra S et al (2014) Future changes to the intensity and frequency of short-duration extreme rainfall. Rev Geophys 52(3):522–555

    Article  Google Scholar 

  • Wigneron J-P, Chanzy A, Calvet J-C, Bruguier N (1995) A simple algorithm to retrieve soil moisture and vegetation biomass using passive microwave measurements over crop fields. Remote Sens Environ 51(3):331–341

    Article  Google Scholar 

  • Wigneron J-P, Laguerre L, Kerr YH (2001) A simple parameterization of the L-band microwave emission from rough agricultural soils. Geosci Remote Sens, IEEE Trans 39(8):1697–1707

    Article  Google Scholar 

  • Wigneron J-P et al (2007) L-band microwave emission of the biosphere (L-MEB) model: description and calibration against experimental data sets over crop fields. Remote Sens Environ 107(4):639–655

    Article  Google Scholar 

  • Xue Y, Cracknell A (1995) Advanced thermal inertia modelling. Remote Sens 16(3):431–446

    Article  Google Scholar 

  • Yue W, Xu J, Tan W, Xu L (2007) The relationship between land surface temperature and NDVI with remote sensing: application to shanghai Landsat 7 ETM+ data. Int J Remote Sens 28(15):3205–3226

    Article  Google Scholar 

  • Zhuo L, Han D, Dai Q, Islam T, Srivastava PK (2015) Appraisal of NLDAS-2 multi-model simulated soil moistures for hydrological modelling. Water Resour Manag 29(10):3503–3517

    Article  Google Scholar 

  • Zreda M et al (2012) COSMOS: the COsmic-ray soil moisture Observing system. Hydrol Earth Syst Sci 16(11):4079

    Article  Google Scholar 

Download references

Acknowledgments

The author would like to acknowledge the Design and Innovation Centre, Banaras Hindu University and Science and Engineering Research Board (SERB), Department of Science and Technology, India, for providing the necessary funding for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prashant K. Srivastava.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastava, P.K. Satellite Soil Moisture: Review of Theory and Applications in Water Resources. Water Resour Manage 31, 3161–3176 (2017). https://doi.org/10.1007/s11269-017-1722-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11269-017-1722-6

Keywords

Navigation