Skip to main content
Log in

Soft Computing Techniques for Rainfall-Runoff Simulation: Local Non–Parametric Paradigm vs. Model Classification Methods

  • Published:
Water Resources Management Aims and scope Submit manuscript

Abstract

Accurate simulation of rainfall-runoff process is of great importance in hydrology and water resources management. Rainfall–runoff modeling is a non-linear process and highly affected by the inputs to the simulation model. In this study, three kinds of soft computing methods, namely artificial neural networks (ANNs), model tree (MT) and multivariate adaptive regression splines (MARS), have been employed and compared for rainfall-runoff process simulation. Moreover, this study investigates the effect of input size, including number of input variables and number of data time series on runoff simulation by the developed models. Inputs to the simulation models for calibration and validation purposes consist two parts: I1: five variables, including daily rainfall and runoff time series (30 years) with lag times, and I2: twelve variables, including daily rainfall and runoff time series (10 years). To increase the model performances, optimal number and type for input variables are identified. The efficiency of the training and testing performances using the ANNs, MT and MARS models is then evaluated using several evaluation criteria. To implement the methodology, Tajan catchment in the northern part of Iran is selected. Based on the results, it was found that using I1 as input to the developed models results in higher simulation performance. The results also provided evidence that MT (R = 0.897, RMSE = 6.70, RSE = 0.33) with set I2 is capable of reliable model for rainfall-runoff process compared with MARS (R = 0.892, RMSE = 7.47, RSE = 0.83) and ANNs (R = 0.884, RMSE = 7.40, RSE = 0.43) models. Therefore, size (length of data time series) and type of input variables have significant effects on the modeling results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Adamowski J, Chan HF, Prasher SO, Sharda VN (2012) Comparison of multivariate adaptive regression splines with coupled wavelet transform artificial neural networks for runoff forecasting in Himalayan micro-watersheds with limited data. J Hydroinf 14(3):731–744. doi:10.2166/hydro.2011.044

    Article  Google Scholar 

  • Adoko AC, Jiao YY, Wu L, Wang H, Wang ZH (2013) Predicting tunnel convergence using multivariate adaptive regression spline and artificial neural network. Tunn Undergr Space Technol 38:368–376. doi:10.1016/j.tust.2013.07.023

    Article  Google Scholar 

  • Asadi S, Shahrabi J, Abbaszadeh P, Tabanmehr S (2013) A new hybrid artificial neural networks for rainfall–runoff process modeling. Neurocomputing 121:470–480. doi:10.1016/j.neucom.2013.05.023

    Article  Google Scholar 

  • Bahat Y, Grodek T, Lekach J, Morin E (2009) Rainfall–runoff modeling in a small hyper-arid catchment. J Hydrol 373(1):204–217. doi:10.1016/j.jhydrol.2009.04.026

    Article  Google Scholar 

  • Bhattacharya B, Solomatine DP (2003) Neural networks and M5 model trees in modeling water level-discharge relationship for an Indian river. Eur Symp Artif Neural Netw Bruges (Belgium) 23-25:407–412

    Google Scholar 

  • Buyukyildiz M, Tezel G, Yilmaz V (2014) Estimation of the change in lake water level by artificial intelligence methods. Water Resour Manag 28(13):4747–4763. doi:10.1007/s11269-014-0773-1

    Article  Google Scholar 

  • Chandwani V, Vyas SK, Agrawal V, Sharma G (2015) Soft computing approach for rainfall-runoff modelling: a review. Aquat Procedia 4:1054–1061. doi:10.1016/ j.aqpro.2015.02.133

    Article  Google Scholar 

  • Chen J, Adams BJ (2006) Integration of artificial neural networks with conceptual models in rainfall-runoff modeling. J Hydrol 318(1):232–249. doi:10.1016/ j.jhydrol.2005.06.017

    Article  Google Scholar 

  • Cheng MY, Cao MT (2014) Evolutionary multivariate adaptive regression splines for estimating shear strength in reinforced-concrete deep beams. Eng Appl Artif Intell 28:86–96. doi:10.1016/j.engappai.2013.11.001

    Article  Google Scholar 

  • Cheng CT, Ou CP, Chau KW (2002) Combining a fuzzy optimal model with a genetic algorithm to solve multi-objective rainfall–runoff model calibration. J Hydrol 268(1):72–86. doi:10.1016/S0022-1694(02)00122-1

    Article  Google Scholar 

  • Deo RC, Samui P, Kim D (2016) Estimation of monthly evaporative loss using relevance vector machine, extreme learning machine and multivariate adaptive regression spline models. Stoch Env Res Risk A 30(6):1769–1784. doi:10.1007/s00477-015-1153-y

    Article  Google Scholar 

  • Dorum A, Yarar A, Sevimli MF, Onüçyildiz M (2010) Modelling the rainfall–runoff data of susurluk basin. Expert Syst Appl 37(9):6587–6593. doi:10.1016/ j.eswa.2010.02.127

    Article  Google Scholar 

  • Etemad-Shahidi A, Mahjoobi J (2009) Comparison between M5′ model tree and neural networks for prediction of significant wave height in Lake superior. Ocean Eng 36(15):1175–1181. doi:10.1016/j.oceaneng.2009.08.008

    Article  Google Scholar 

  • Farfani HA, Behnamfar F, Fathollahi A (2015) Dynamic analysis of soil-structure interaction using the neural networks and the support vector machines. Expert Syst Appl 42(22):8971–8981. doi:10.1016/j.eswa.2015.07.053

    Article  Google Scholar 

  • Fischer MM (1998) Computational neural networks: a new paradigm for spatial analysis. Environment and Planning A 30(10):1873–1891. doi:10.1068/a301873

    Article  Google Scholar 

  • Friedman JH (1991) Multivariate adaptive regression splines. Ann Stat:1–67

  • Goyal MK, Ojha CSP (2010) Analysis of mean monthly rainfall runoff data of Indian catchments using dimensionless variables by neural network. J Environ Prot 1(2):155–171. doi:10.4236/jep.2010.12020

    Article  Google Scholar 

  • Goyal MK, Ojha CSP (2011) Estimation of scour downstream of a ski-jump bucket using support vector and M5 model tree. Water Resour Manag 25(9):2177–2195. doi:10.1007/s11269-011-9801-6

    Article  Google Scholar 

  • Hamidi O, Poorolajal J, Sadeghifar M, Abbasi H, Maryanaji Z, Faridi HR, Tapak L (2015) A comparative study of support vector machines and artificial neural networks for predicting precipitation in Iran. Theor Appl Climatol 119(3–4):723–731. doi:10.1007/s00704-014-1141-z

    Article  Google Scholar 

  • Hosseini SM, Mahjouri N (2016) Integrating support vector regression and a geomorphologic artificial neural network for daily rainfall-runoff modeling. Appl Soft Comput 38:329–345. doi:10.1016/j.asoc.2015.09.049

    Article  Google Scholar 

  • Jacquin AP, Shamseldin AY (2006) Development of rainfall–runoff models using Takagi–Sugeno fuzzy inference systems. J Hydrol 329(1):154–173. doi:10.1016/ j.jhydrol.2006.02.009

    Article  Google Scholar 

  • Jain P, Deo MC (2006) Neural networks in ocean engineering. Ships and Offshore Structures 1(1):25–35. doi:10.1533/saos.2004.0005

    Article  Google Scholar 

  • Kim S, Kim HS (2008a) Neural networks and genetic algorithm approach for nonlinear evaporation and evapotranspiration modeling. J Hydrol 351(3):299–317. doi:10.1016/j.jhydrol.2007.12.014

    Article  Google Scholar 

  • Kim S, Kim HS (2008b) Uncertainty reduction of flood stage forecasting using neural networks model. J Am Water Resour Assoc 44(1):148–165. doi:10.1111/j.1752-1688.2007.00144.x

    Article  Google Scholar 

  • Kim S, Singh VP (2013) Flood forecasting using neural computing techniques and conceptual class segregation. J Am Water Resour Assoc 49(6):1421–1435. doi:10.1111/jawr.12093

    Article  Google Scholar 

  • Kisi O (2015) Pan evaporation modeling using least square support vector machine, multivariate adaptive regression splines and M5 model tree. J Hydrol 528:312–320. doi:10.1016/j.jhydrol.2015.06.052

    Article  Google Scholar 

  • Kisi O, Parmar KS (2016) Application of least square support vector machine and multivariate adaptive regression spline models in long term prediction of river water pollution. J Hydrol 534:104–112. doi:10.1016/j.jhydrol.2015.12.014

    Article  Google Scholar 

  • Kisi O, Shiri J, Tombul M (2013) Modeling rainfall-runoff process using soft computing techniques. Comput Geosci 51:108–117. doi:10.1016/j.cageo.2012.07.001

    Article  Google Scholar 

  • Li Z, Huang G, Wang X, Han J, Fan Y (2016) Impacts of future climate change on river discharge based on hydrological inference: a case study of the Grand River watershed in Ontario, Canada. Sci Total Environ 548:198–210. doi:10.1016/ j.scitotenv.2016.01.002

    Article  Google Scholar 

  • McCandless TC, Haupt SE, Young GS (2015) A model tree approach to forecasting solar irradiance variability. Sol Energy 120:514–524. doi:10.1016/j.solener.2015.07.020

    Article  Google Scholar 

  • McCuen RH (1993) Microcomputer applications in statistical hydrology. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Mengistu DT, Moges SA, Sorteberg A (2016) Revisiting systems type black-box rainfall-runoff models for flow forecasting application. Journal of Water Resource and Protection 8(1):65–83. doi:10.4236/jwarp.2016.81006

    Article  Google Scholar 

  • Najafzadeh M, Barani GA, Azamathulla HM (2014) Prediction of pipeline scour depth in clear-water and live-bed conditions using group method of data handling. Neural Comput & Applic 24(3–4):629–635. doi:10.1007/s00521-012-1258-x

    Article  Google Scholar 

  • Najafzadeh M, Rezaie Balf M, Rashedi E (2016) Prediction of maximum scour depth around piers with debris accumulation using EPR, MT, and GEP models. J Hydroinf 18(2):212. doi:10.2166/hydro.2016.212

    Google Scholar 

  • Najafzadeh, M., Shiri, J., Rezaie-Balf, M. (2017). New expressions-based models to estimate scour depth at clear water conditions in rectangular channels. Mar Georesour Geotechnol, accepted DOI: 10.1080/1064119X.2017.1303009

  • Nourani V, Komasi M, Mano A (2009) A multivariate ANN-wavelet approach for rainfall–runoff modeling. Water Resour Manag 23(14):2877–2894. doi:10.1007/s11269-009-9414-5

    Article  Google Scholar 

  • Quinlan JR (1992) Learning with continuous classes. In: Adams, Sterling, editors. Proceedings of 5th Australian joint conference on artificial intelligence. World Scientific 92:343–348

    Google Scholar 

  • Rahimikhoob A (2014) Comparison between M5 model tree and neural networks for estimating reference evapotranspiration in an arid environment. Water Resour Manag 28(3):657–669. doi:10.1007/s11269-013-0506-x

    Article  Google Scholar 

  • Rahimikhoob A (2016) Comparison of M5 model tree and artificial neural network’s methodologies in modelling daily reference evapotranspiration from NOAA satellite images. Water Resour Manag 30(9):3063–3075. doi:10.1007/s11269-016-1331-9

    Article  Google Scholar 

  • Rajurkar MP, Kothyari UC, Chaube UC (2004) Modeling of the daily rainfall-runoff relationship with artificial neural network. J Hydrol 285(1):96–113. doi:10.1016/j.jhydrol.2003.08.011

    Article  Google Scholar 

  • Rezaie-Balf M, Kisi O (2017) New formulation for forecasting streamflow: evolutionary polynomial regression vs. extreme learning machine. Hydrol Res:nh2017283. doi:10.2166/nh.2017.283

  • Riad S, Mania J, Bouchaou L, Najjar Y (2004) Rainfall-runoff model using an artificial neural network approach. Math Comput Model 40(7):839–846. doi:10.1016/j.mcm.2004.10.012

    Article  Google Scholar 

  • Samadi M, Jabbari E, Azamathulla HM, Mojallal M (2015) Estimation of scour depth below free overfall spillways using multivariate adaptive regression splines and artificial neural networks. Eng Appl Comput Fluid Mech 9(1):291–300. doi:10.1080/19942060.2015.1011826

    Google Scholar 

  • Samui P (2013) Multivariate adaptive regression spline (MARS) for prediction of elastic modulus of jointed rock mass. Geotech Geol Eng 31(1):249–253. doi:10.1007/s10706-012-9584-4

    Article  Google Scholar 

  • Sattari MT, Pal M, Apaydin H, Ozturk F (2013) M5 model tree application in daily river flow forecasting in Sohu stream, Turkey. Water Resources 40(3):233–242. doi:10.1134/S0097807813030123

    Article  Google Scholar 

  • Sekulic S, Kowalski BR (1992) MARS: a tutorial. J Chemom 6(4):199–216. doi:10.1002/cem.1180060405

    Article  Google Scholar 

  • Seo Y, Kim S, Kisi O, Singh VP (2015) Daily water level forecasting using wavelet decomposition and artificial intelligence techniques. J Hydrol 520:224–243. doi:10.1016/j.jhydrol.2014.11.050

    Article  Google Scholar 

  • Setiono, Hadiani R (2015) Analysis of rainfall-runoff neuron input model with artificial neural network for simulation for availability of discharge at bah Bolon watershed. Procedia Engineering 125:150–157. doi:10.1016/j.proeng.2015.11.022

    Article  Google Scholar 

  • Sharda VN, Prasher SO, Patel RM, Ojasvi PR, Prakash C (2008) Performance of multivariate adaptive regression splines (MARS) in predicting runoff in mid-Himalayan micro-watersheds with limited data. Hydrol Sci J 53(6):1165–1175. doi:10.1623/hysj.53.6.1165

    Article  Google Scholar 

  • Shoaib M, Shamseldin AY, Melville BW (2014) Comparative study of different wavelet based neural network models for rainfall–runoff modeling. J Hydrol 515:47–58. doi:10.1016/j.jhydrol.2014.04.055

    Article  Google Scholar 

  • Singh KP, Basant A, Malik A, Jain G (2009) Artificial neural network modeling of the river water quality—a case study. Ecol Model 220(6):888–895. doi:10.1016/j.ecolmodel.2009.01.004

    Article  Google Scholar 

  • Singh VP, Jain SK, Tyagi A (2007) Risk and reliability analysis: a handbook for civil and environmental engineers. ASCE Press, Reston. doi:10.1061/9780784408919

    Book  Google Scholar 

  • Solomatine DP, Dulal KN (2003) Model trees as an alternative to neural networks in rainfall—runoff modelling. Hydrol Sci J 48(3):399–411. doi:10.1623/ hysj.48.3.399.45291

    Article  Google Scholar 

  • Solomatine DP, Xue Y (2004) M5 model trees and neural networks: application to flood forecasting in the upper reach of the Huai River in China. ASCE J Hydrol Eng 9(6):491–501. doi:10.1061/(ASCE)1084-0699(2004)9:6(491)

    Article  Google Scholar 

  • Sudheer KP, Gosain AK, Mohana Rangan D, Saheb SM (2002) Modelling evaporation using an artificial neural network algorithm. Hydrol Process 16(16):3189–3202. doi:10.1002/hyp.1096

    Article  Google Scholar 

  • Talei A, Chua LHC, Quek C (2010) A novel application of a neuro-fuzzy computational technique in event-based rainfall–runoff modeling. Expert Syst Appl 37(12):7456–7468. doi:10.1016/j.eswa.2010.04.015

    Article  Google Scholar 

  • Tokar AS, Johnson PA (1999) Rainfall-runoff modeling using artificial neural networks. ASCE J Hydrol Eng 4(3):232–239. doi:10.1061/(ASCE)1084-0699(1999)4:3(232)

    Article  Google Scholar 

  • Vafakhah M, Janizadeh S, Bozchaloei SK (2014) Application of several data-driven techniques for rainfall-runoff modeling. ECOPERSIA 2(1):455–469

    Google Scholar 

  • Wang Y, Witten IH. (1997). Induction of model trees for predicting continuous classes. In: Proceedings of the poster papers of the European conference on machine learning

  • Wu CL, Chau KW (2011) Rainfall–runoff modeling using artificial neural network coupled with singular spectrum analysis. J Hydrol 399(3):394–409. doi:10.1016/ j.jhydrol.2011.01.017

    Article  Google Scholar 

  • Zahmatkesh Z, Burian SJ, Karamouz M, Tavakol-Davani H, Goharian E (2014a) Low-impact development practices to mitigate climate change effects on urban stormwater runoff: case study of new York City. ASCE J Irrig Drain Eng 141(1):04014043. doi:10.1061/(ASCE)IR.1943-4774.0000770

    Article  Google Scholar 

  • Zahmatkesh Z, Karamouz M, Goharian E, Burian SJ (2014b) Analysis of the effects of climate change on urban storm water runoff using statistically downscaled precipitation data and a change factor approach. ASCE J Hydrol Eng 20(7):05014022. doi:10.1061/(ASCE)HE.1943-5584.0001064

    Article  Google Scholar 

  • Zahmatkesh Z, Karamouz M, Nazif S (2015) Uncertainty based modeling of rainfall-runoff: combined differential evolution adaptive metropolis (DREAM) and K-means clustering. Adv Water Resour 83:405–420. doi:10.1016/j.advwatres.2015.06.012

    Article  Google Scholar 

  • Zeroual A, Meddi M, Assani AA (2016) Artificial neural network rainfall-discharge model assessment under rating curve uncertainty and monthly discharge volume predictions. Water Resour Manag 30(9):3191–3205. doi:10.1007/s11269-016-1340-8

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sungwon Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezaie-Balf, M., Zahmatkesh, Z. & Kim, S. Soft Computing Techniques for Rainfall-Runoff Simulation: Local Non–Parametric Paradigm vs. Model Classification Methods. Water Resour Manage 31, 3843–3865 (2017). https://doi.org/10.1007/s11269-017-1711-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11269-017-1711-9

Keywords

Navigation