Skip to main content
Log in

Seasonality of Roughness - the Indicator of Annual River Flow Resistance Condition in a Lowland Catchment

  • Published:
Water Resources Management Aims and scope Submit manuscript

Abstract

Accurate estimation of flow resistance restricts the quality of the hydraulic model performance. In this study, we try to investigate the seasonal dynamic of the Manning’s roughness coefficient (n) based on the one-dimensional hydraulic model HEC-RAS in a German lowland area. We set up four river section models based on the 1 m digital elevation model and field measurements, in which the seasonal roughness factors were calibrated and validated with the gauge record. The results revealed that: 1) the Manning’s n varied from 46% to 135% from the base value in autumn; 2) adopting the seasonal roughness factor improved the quality of the model output; 3) the vegetation condition and water elevation dominated the Manning’s n in summer (April–September) and winter (October–March) half year respectively. Water temperature increased the flow resistence in winter half year; 4) the peak value of Manning’s n appeared in late summer due to the highest biomass, while the minimum roughness occurred in early-spring because of the combined influence of low biomass, high water level and relatively higher temperature. The involvement of seasonal roughness factor improved the model performance and the results are comparable to the previous research of the same area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ali AM, Solomatine DP, Di Baldassarre G (2015) Assessing the impact of different sources of topographic data on 1-D hydraulic modelling of floods. Hydrol Earth Syst Sci 19:631–643

    Article  Google Scholar 

  • Bakry MF (1996) Impact of mechanical cutting on the channel roughness. Water Resour Manag 10:479–486. doi:10.1007/BF00422551

    Article  Google Scholar 

  • Bakry M, Gates T, Khattab A (1992) Field-measured hydraulic resistance characteristics in vegetation-infested canals. J Irrig Drain Eng 118:256–274. doi:10.1061/(ASCE)0733-9437(1992)118:2(256)

    Article  Google Scholar 

  • Bates PD, De Roo APJ (2000) A simple raster-based model for flood inundation simulation. J Hydrol 236:54–77. doi:10.1016/S0022-1694(00)00278-X

    Article  Google Scholar 

  • Brunner G W (1995). HEC-RAS river analysis system. Hydraulic reference manual. Version 1.0. Hydrologic Engineering Center, Davis, California.

  • Champion PD, Tanner CC (2000) Seasonality of macrophytes and interaction with flow in a New Zealand lowland stream. Hydrobiologia 441:1–12. doi:10.1023/A:1017517303221

    Article  Google Scholar 

  • Chow VT (1959) Open Channel hydraulics. McGraw-Hill Book Company, Inc, New York

    Google Scholar 

  • Climatemaps (2013) Average Temperatures in Schleswig. Kiel, Germany. http://www.schleswig.climatemps.com/. Accessed 15 April 2017

  • De Doncker L, Troch P, Verhoeven R, Bal K, Meire P, Quintelier J (2009) Determination of the manning roughness coefficient influenced by vegetation in the river Aa and Biebrza river. Environ Fluid Mech 9:549–567. doi:10.1007/s10652-009-9149-0

    Article  Google Scholar 

  • De Doncker L, Troch P, Verhoeven R, Buis K (2011) Deriving the relationship among discharge, biomass and Manning’s coefficient through a calibration approach. Hydrol Process 25:1979–1995. doi:10.1002/hyp.7978

    Article  Google Scholar 

  • DLR (1995) Landsat TM5 scene from the year 1995 with a resolution of 25 x 25 m. German Aerospace Center, Köln

  • EEA (2000) Corine Landcover 250 m-Raster. European Environment Agency, Copenhagen

  • Fisher K (1992) The hydraulic roughness of vegetated channels. Rep. SR 305

  • Green JC (2005a) Modelling flow resistance in vegetated streams: review and development of new theory. Hydrol Process 19:1245–1259. doi:10.1002/hyp.5564

    Article  Google Scholar 

  • Green JC (2005b) Velocity and turbulence distribution around lotic macrophytes. Aquat Ecol 39:01–10. doi:10.1007/s10452-004-1913-0

    Article  Google Scholar 

  • Grimaldi, S., Petroselli, A., Alonso, G., Nardi, F., 2010. Flow time estimation with spatially variable hillslope velocity in ungauged basins. Adv Water Resour, special issue on novel insights in hydrological modelling Rome-2009 33, 1216–1223. doi:10.1016/j.advwatres.2010.06.003

    Article  Google Scholar 

  • Hervouet J-M (2000) TELEMAC modelling system: an overview. Hydrol Process 14:2209–2210. doi:10.1002/1099-1085(200009)14:13<2209::AID-HYP23>3.0.CO;2-6

    Article  Google Scholar 

  • Hicks FE, Peacock T (2005) Suitability of HEC-RAS for flood forecasting. Can Water Resour J 30:159–174. doi:10.4296/cwrj3002159

    Article  Google Scholar 

  • Horritt MS, Bates PD (2002) Evaluation of 1D and 2D numerical models for predicting river flood inundation. J Hydrol 268:87–99. doi:10.1016/S0022-1694(02)00121-X

    Article  Google Scholar 

  • Knebl MR, Yang Z-L, Hutchison K, Maidment DR (2005) Regional scale flood modeling using NEXRAD rainfall, GIS, and HEC-HMS/RAS: a case study for the San Antonio River basin summer 2002 storm event. J Environ Manag 75:325–336. doi:10.1016/j.jenvman.2004.11.024

    Article  Google Scholar 

  • LKN-SH (2012) Landesbetriebs für Küstenschutz, Nationalpark und Meeresschutz Schleswig-Holstein: Discharge and water surface elevation data. Hersum: LKN, s.n.p.

  • LVermA (1995) Digital elevation model DHM50 for Schleswig-Holstein, grid size 50 x 50 m. Landesvermessungsamt Schleswig-Holstein, Kiel

  • Mahmoudi M, Nalesso M, Garcia RF, Miralles-Wilhelm F (2013) The effect of Manning’s roughness calibration on flow and sediment transport in wetlands: vegetation drag approach. AGU Spring Meet Abstr 22:7

    Google Scholar 

  • Meléndez Robledillo JM, Pérez T, De M (2006) Hydraulic simulation in natural channels. Comparative study between Manning formula and the Russian method. For. Esp

  • Morvan H, Knight D, Wright N, Tang X, Crossley A (2008) The concept of roughness in fluvial hydraulics and its formulation in 1D, 2D and 3D numerical simulation models. J Hydraul Res 46:191–208. doi:10.1080/00221686.2008.9521855

    Article  Google Scholar 

  • Murray AB, Paola C (2003) Modelling the effect of vegetation on channel pattern in bedload rivers. Earth Surf Process Landf 28:131–143. doi:10.1002/esp.428

    Article  Google Scholar 

  • O’Hare MT, McGahey C, Bissett N, Cailes C, Henville P, Scarlett P (2010) Variability in roughness measurements for vegetated rivers near base flow, in England and Scotland. J Hydrol 385:361–370. doi:10.1016/j.jhydrol.2010.02.036

    Article  Google Scholar 

  • Pappenberger F, Beven K, Horritt M, Blazkova S (2005) Uncertainty in the calibration of effective roughness parameters in HEC-RAS using inundation and downstream level observations. J Hydrol 302:46–69. doi:10.1016/j.jhydrol.2004.06.036

    Article  Google Scholar 

  • Parhi PK, Sankhua R, Roy GP (2012) Calibration of channel roughness for Mahanadi River, (India) using HEC-RAS model. J Water Resour Prot 4(10):847

  • Retsinis E, Bobotas S, Demetriou J (2013) Rectangular open channels of combined roughness. Eur Sci J 9:174–181

    Google Scholar 

  • Ruf G (1988) How to replace the manning (Strickler) formula in steep and rough torrents? New experimental data, a new approach for natural stretches. Presented at the European forestry commission. Working party on the Management of Mountain Watersheds. Sess. 16, Aix en Provence, 14-24 Jun 1988

  • Shahrokhnia MA, Javan M (2007) Influence of roughness changes on offtaking discharge in irrigation canals. Water Resour Manag 21:635–647. doi:10.1007/s11269-006-9034-2

    Article  Google Scholar 

  • Shih SF, Rahi GS (1982) Seasonal variations of Manning’s roughness coefficient in a subtropical marsh. Trans ASAE 25:116–119

    Article  Google Scholar 

  • Song S, Schmalz B, Fohrer N (2014) Simulation and comparison of stream power in-channel and on the floodplain in a German lowland area. J Hydrol Hydromech 62:133–144. doi:10.2478/johh-2014-0018

  • Song S, Schmalz B, Fohrer N (2015) Simulation, quantification and comparison of in-channel and floodplain sediment processes in a lowland area – a case study of the Upper Stör catchment in northern Germany. Ecol Indic 57:118–127. doi:10.1016/j.ecolind.2015.03.030

    Article  Google Scholar 

  • Song S, Schmalz B, Hörmann G, Fohrer N (2012) Accuracy, reproducibility and sensitivity of acoustic Doppler technology for velocity and discharge measurements in medium-sized rivers. Hydrol Sci J 57:1626–1641. doi:10.1080/02626667.2012.727999

  • Stone BM, Shen HT (2002) Hydraulic resistance of flow in channels with cylindrical roughness. J Hydraul Eng 128:500–506. doi:10.1061/(ASCE)0733-9429(2002)128:5(500)

    Article  Google Scholar 

  • Tsihrintzis VA, Madiedo EE (2000) Hydraulic resistance determination in marsh wetlands. Water Resour Manag 14:285–309. doi:10.1023/A:1008130827797

    Article  Google Scholar 

  • Watson D (1987) Hydraulic effects of aquatic weeds in U.K. Rivers. Regul Rivers Res Manag 1:211–227. doi:10.1002/rrr.3450010303

    Article  Google Scholar 

  • Wiberg PL, Smith JD (1991) Velocity distribution and bed roughness in high-gradient streams. Water Resour Res 27:825–838. doi:10.1029/90WR02770

    Article  Google Scholar 

  • Wu F, Shen H, Chou Y (1999) Variation of roughness coefficients for unsubmerged and submerged vegetation. J Hydraul Eng 125:934–942. doi:10.1061/(ASCE)0733-9429(1999)125:9(934)

    Article  Google Scholar 

  • Yen BC (1992) Channel flow resistance: centennial of Manning’s formula. Water Resources Publication, Littleton

  • Yen BC (2002) Open Channel flow resistance. J Hydraul Eng 128:20–39. doi:10.1061/(ASCE)0733-9429(2002)128:1(20)

    Article  Google Scholar 

  • Yu G, Lim S-Y (2003) Modified manning formula for flow in alluvial channels with sand-beds. J Hydraul Res 41:597–608. doi:10.1080/00221680309506892

    Article  Google Scholar 

  • Yu Z, Tian Y, Zheng Y, Zhao X (2009) Calibration of pipe roughness coefficient based on manning formula and genetic algorithm. Trans Tianjin Univ 15:452–456

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Song.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, S., Schmalz, B., Xu, Y.P. et al. Seasonality of Roughness - the Indicator of Annual River Flow Resistance Condition in a Lowland Catchment. Water Resour Manage 31, 3299–3312 (2017). https://doi.org/10.1007/s11269-017-1656-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11269-017-1656-z

Keywords

Navigation