Skip to main content
Log in

Evaluating Municipal Water Management Options with the Incorporation of Water Quality and Energy Consumption

  • Published:
Water Resources Management Aims and scope Submit manuscript

Abstract

Rapidly growing population and associated socio-economic development are placing increasing stress on water resources and posing challenges for water management. This study develops a system dynamics model for municipal water management in Hillsborough County by incorporating water quality and energy consumption associated with water supply in decision-making. The result shows that the percentage of surface water withdrawal will decrease by 11.7~23.3 % with considering water quality, and this results in the simulated surface water level increases by 1.32~1.39 %. With considering both water quality and energy consumption, the surface water level increases by 1.10~1.30 %. There is a slight decrease in groundwater storage (0.02~0.08 %) compared with the reference behavior. The result also finds that water conservation education is the most effective option among the seven management options reducing the freshwater withdrawals. It reduces the freshwater withdrawals by 14.9 %, followed by rebates on indoor water appliances. Rebates on outdoor water appliances and irrigation restriction are effective to decrease the outdoor water demand. The model is sensitive to precipitation and a more accurate representation of precipitation should be employed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adeniran EA, Bamiro OA (2010) A system dynamics strategic planning model for a municipal water supply scheme. Proceedings of the 28th International Conference of the System Dynamics Society. System Dynamics Society

  • Ahmad S, Prashar D (2010) Evaluating municipal water conservation policies using a dynamic simulation model. Water Resour Manag 24(13):3371–3395

    Article  Google Scholar 

  • Asano T (2007) Water reuse: issues, technologies, and applications. McGraw-Hill Professional

  • Assaraf OBZ, Orion N (2005) Development of system thinking skills in the context of earth system education. J Res Sci Teach 42:518–560

    Article  Google Scholar 

  • Barlas Y (1996) Formal aspects of model validity and validation in system dynamics. Syst Dyn Rev 12(3):183–210

    Article  Google Scholar 

  • Baron JS, Poff NLR, Angermeier PL et al (2002) Meeting ecological and societal needs for freshwater. Ecol Appl 12(5):1247–1260

    Article  Google Scholar 

  • Burton FL (1996) Water and wastewater industries: characteristics and energy management opportunities. Electriic Power Research Institue

  • Carlson SW, Walburger A (2007) Energy index development for benchmarking water and wastewater utilities. AWWA Research Foundation

  • Chen Y, Kao S, Yang H (2006) Using system dynamics to simulate the Hsinchu Region development and water resources, examining the confluence of environmental and water concerns. Proceedings of the World Environmental and Water Resources Congress. American Society of Civil Engineers (ASCE)

  • Chung G, Kim JH, Kim T (2008) System dynamics modeling approach to water supply system. Civ Eng 12(4):275–280

    Google Scholar 

  • City of Tampa (2012) Facts of Interest: Advanced Wastewater Treatment Plant, http://www.tampagov.net/dept_wastewater/information_resources/Advanced_Wastewater_Treatment_Plant/facts_of_interest.asp. Retrieved on 09-04-2012

  • City of Tampa (2013a) Tampa’s water treatment process brochure. https://www.tampagov.net/dept_water/files/Forms_Publications/Fact_Sheets_Brochures/Treating_Tampas_Water.pdf. Retrieved on 03-17-2014

  • City of Tampa (2013b) Treating Tampa’s water. https://www.tampagov.net/dept_water/information_resources/treating_tampas_water.asp. Retrieved on 03-16-2014

  • Coyle RG (1996) System dynamics modelling: a practical approach. Chapman & Hall/CRC

  • Dalhuisen J, Florax R, Groot H et al (2003) Price and income elasticities of residential water demand: a meta-analysis. Land Econ 79(2):292–308

    Article  Google Scholar 

  • Dolnicar S, Schäfer AI (2009) Desalinated versus recycled water: public perceptions and profiles of the accepters. J Environ Manag 90(2):888–900

    Article  Google Scholar 

  • Ford A (1996) Testing the snake river explorer. Syst Dyn Rev 12(4):305–329

    Article  Google Scholar 

  • Forrester JW (1961) Industrial dynamics. MIT Press, Cambridge

    Google Scholar 

  • Forrester JW (1971) World dynamics. Productivity Press, Portland

    Google Scholar 

  • Forrester JW (1994) System dynamics, systems thinking, and soft or. Syst Dyn Rev 10(2–3):245–256

    Article  Google Scholar 

  • Goldstein R, Smith W (2002) Water & sustainability (Volume 4): U.S. electricity consumption for water supply & treatment—the next half century. Electric Power Research Institute

  • Guo HC, Liu L, Huang GH et al (2001) A system dynamics approach for regional environmental planningand management: a study for the Lake Erhai Basin. J Environ Manag 61:93–111

    Article  Google Scholar 

  • GWP (2000) Integrated water resources management. Technical Advisory Committee (Tac) no.4. Global Water Partnership, Stockholm

    Google Scholar 

  • Hamilton HR (1969) Systems simulation for regional analysis: an application to river-basin planning. MIT Press, Cambridge

    Google Scholar 

  • Hensher D, Shore N, Train K (2005) Households’ willingness to pay for water service attributes. Environ Resour Econ 32(4):509–531

    Article  Google Scholar 

  • Hjorth P, Bagheri A (2006) Navigating towards sustainable development: a system dynamics approach. Futures 38(1):74–92

    Article  Google Scholar 

  • Inman D, Jeffrey P (2006) A review of residential water conservation tool performance and influences on implementation effectiveness. Urban Water J 3(3):127–143

    Article  Google Scholar 

  • Jackson MC, White BM (2012) 2010 estimated water use in The Southwest Florida Water Management District

  • Jiang Y (2009) China’s water scarcity. J Environ Manag 90(11):3185–3196

    Article  Google Scholar 

  • Kenny JF, Barber NL, Hutson SS et al (2009) Estimated use of water in the United States in 2005: U.S. Geological Survey Circular 1344

  • Lane DC (2008) The emergence and use of diagramming in system dynamics: a critical account. Syst Res Behav Sci 25(1):3–23

    Article  Google Scholar 

  • Li L, Simonovic SP (2002) System dynamics model for predicting floods from snowmelt in North American prairie watersheds. Hydrol Process 16(13):2645–2666

    Article  Google Scholar 

  • Marks JS (2004) Advancing community acceptance of reclaimed water comparing overseas surveys with local surveys. Water Melb Artarmon 31:46–51

    Google Scholar 

  • Martin WE, Kulakowski S (1991) Water price as a policy variable in managing urban water use: Tucson. Ariz Water Resour Res 27(2):157–166

    Article  Google Scholar 

  • Martinez GF, Gupta HV (2010) Toward improved identification of hydrological models: a diagnostic evaluation of the “abcd” monthly water balance model for the conterminous United States. Water Resour Res 46(8)

  • Meadows DH, Goldsmith EI, Meadow P (1972) The limits to growth (Vol. 381). London: Earth Island Limited

  • Mirchi A, Madani K, Watkins D et al (2012) Synthesis of system dynamics tools for holistic conceptualization of water resources problems. Water Resour Manag 26(9):2421–2442

    Article  Google Scholar 

  • Nieswiadomy ML (1992) Estimating urban residential water demand: effects of price structure, conservation, and education. Water Resour Res 28(3):609–615

    Article  Google Scholar 

  • O’Hagan J, Maulbetsch J (2009) Water use for electricity generation. California Energy Commission, Public Interest Energy Research

  • Olmstead SM, Stavins RN (2009) Comparing price and nonprice approaches to urban water conservation. Water Resour Res 45(4)

  • Powicki C (2002) The water imperative. Electric Power Research Institute (EPRI)

  • Qaiser K, Ahmad S, Johnson W et al (2011) Evaluating the impact of water conservation on fate of outdoor water use: a study in an arid region. J Environ Manag 92:2061–2068

    Article  Google Scholar 

  • Qi C, Chang N (2011) System dynamics modeling for municipal water demand estimation in an urban region under uncertain economic impacts. J Environ Manag 92(6):1628–1641

    Article  Google Scholar 

  • Rijsberman FR (2006) Water scarcity: fact or fiction? Agric Water Manag 80(1):5–22

    Article  Google Scholar 

  • Scott KF, White BM (2011) 2009 estimated water use in the Southwest Florida Water Management District. Southwest Florida Water Management District

  • Seckler D, Barker R, Amarasinghe U (1999) Water scarcity in the twenty-first century. Int J Water Resour Dev 15(1–2):29–42

    Article  Google Scholar 

  • Senge PM (1997) The fifth discipline. Meas Bus Excell 1:46–51

    Article  Google Scholar 

  • Sieker H, Bandermann S, Schröter K et al (2006) Development of a decision support system for integrated water resources management in intensively used small watersheds. Water Practice Technol 1(1)

  • Simonovic SP (2002) World water dynamics: global modeling of water resources. Environ Manag 66:249–267

    Article  Google Scholar 

  • Simonovic SP, Rajasekaram V (2004) Integrated analyses of Canada’s water resources: a system dynamics approach. Can Water Resour 29(4):223–250

    Article  Google Scholar 

  • Southwest Florida Water Management District (SWFWMD) (2010a) Alternative water supplies: 2010 annual report

  • Southwest Florida Water Management District (SWFWMD) (2010b) Economic feasibility of reclaimed water use by non-utility water use permittees and applicants—final report

  • Stave KA (2002) A system dynamics model to facilitate public understanding of water management options in Las Vegas, Nevada. Environ Manag 67(4):303–313

    Article  Google Scholar 

  • Sterman JD (1984) Appropriate summary statistics for evaluating the historical fit of system dynamics model. Dynamica 10:51–66

    Google Scholar 

  • Sterman JD (2001) System dynamics modeling. Calif Manag Rev 43(4):8

    Article  Google Scholar 

  • Stillwell A, Hoppock D et al (2010) Energy recovery from wastewater treatment plants in the United States: a case study of the energy-water nexus. Sustainability 2:945–962

    Article  Google Scholar 

  • Stillwell A, King C et al (2011) The energy-water nexus in Texas. Ecol Soc 16:2

    Google Scholar 

  • Stokes J, Horvath A (2006) Life cycle energy assessment of alternative water supply systems. Int J Life Cycle Assess 11:335–343

    Article  Google Scholar 

  • Tidwell VC, Passell HD, Conrad SH et al (2004) System dynamics modeling for community-based water planning: application to the Middle Rio Grande. Aquat Sci 66:357–372

    Article  Google Scholar 

  • Tong F, Dong Z (2008) System dynamics based water resources planning: a case study of South Jiangsu Province. The 2nd International Conference on Bioinformatics and Biomedical Engineering, pp. 3065–3068

  • University of Michigan (UM), Center for Sustainable Systems (2013) U.S. water supply and distribution factsheet. Pub. No. CSS05-17. October 2013

  • U.S. Department of Energy (DOE) (2006) Energy demands on water resources, report to congress on the interdependence of energy and water

  • U.S Environmental Protection Agency (EPA) (2009) Review draft control and mitigation of drinking water losses in distribution systems. EPA 816-D-09-001. November 2009

  • Whitford PW (1972) Residential water demand forecasting. Water Resour Res 8(4):829–839

    Article  Google Scholar 

  • Young RA (1973) Price elasticity of demand for municipal water: a case study of Tucson, Arizona. Water Resour Res 9(4):1068–1072

    Article  Google Scholar 

  • Zarghami M, Akbariyeh S (2012) System dynamics modeling for complex urban water systems: application to the City of Tabriz, Iran. Resour Conserv Recycl 60:99–106

    Article  Google Scholar 

Download references

Acknowledgments

This material is based in part upon work supported by the National Science Foundation under Grant Numbers CBET 0725636. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiong Zhang.

Appendices

Appendix 1. Key Variable Quantification

$$ \mathrm{Indoor}\ \mathrm{Water}\ \mathrm{Demand}=\mathrm{Indoor}\ \mathrm{Water}\ \mathrm{Demand}\ \mathrm{Per}\ \mathrm{Capita}\times \mathrm{Population} $$

Unit: Gallon/Month

$$ \begin{array}{l}\mathrm{Indoor}\mathrm{Water}\mathrm{Demand}\mathrm{per}\mathrm{Capita}\hfill \\ {}\kern6em =\frac{\mathrm{Daily}\ \mathrm{Indoor}\ \mathrm{Water}\ \mathrm{Demand}\ \mathrm{per}\ \mathrm{Capita}}{\mathrm{Indoor}\ \mathrm{Water}\ \mathrm{Use}\ \mathrm{Efficiency}}\times 30\hfill \\ {}\kern6em \times \left(1-\mathrm{Reduction}\ \mathrm{due}\ \mathrm{t}\mathrm{o}\ \mathrm{Water}\ \mathrm{Price}\right)\hfill \end{array} $$

Unit: Gallon/Month

$$ \mathrm{Daily}\ \mathrm{Indoor}\ \mathrm{Water}\ \mathrm{Demand}\ \mathrm{per}\ \mathrm{Capita}=15 $$

Unit: Gallon/Person-Day

$$ \mathrm{Indoor}\ \mathrm{Water}\ \mathrm{Efficiency} = \frac{\mathrm{Household}\ \mathrm{Indoor}\ \mathrm{Water}\ \mathrm{Efficient}\ \mathrm{Appliances}}{\mathrm{Maximum}\ \mathrm{Indoor}\ \mathrm{Water}\ \mathrm{Efficient}\ \mathrm{Appliances}\times 0.95} $$

Unit: Fraction

$$ \begin{array}{l}\mathrm{MaximumIndoorWaterEfficientAppliances}\hfill \\ {}=\mathrm{Indoor}\ \mathrm{Water}\ \mathrm{Appliances}\ \mathrm{per}\ \mathrm{Household} \times \frac{\mathrm{Initial}\ \mathrm{Population}}{\mathrm{People}\ \mathrm{per}\ \mathrm{Household}}\hfill \\ {}+\mathrm{DELAY}1\left(\frac{\mathrm{Population}\ \hbox{--}\ \mathrm{Initial}\ \mathrm{Population}}{\mathrm{People}\ \mathrm{per}\ \mathrm{Household}}\right.\hfill \\ {}\left.\times \mathrm{Indoor}\ \mathrm{Water}\ \mathrm{Appliances}\ \mathrm{per}\ \mathrm{Household},\ 36\right)\times 0.2\hfill \end{array} $$

Unit: Number

$$ \begin{array}{l}\mathrm{AgedIndoorWaterAppliances}\hfill \\ {}\kern6em =\mathrm{Household}\ \mathrm{Indoor}\ \mathrm{Water}\ \mathrm{Efficient}\ \mathrm{Appliances}\hfill \\ {}\kern6em \times \mathrm{Indoor}\ \mathrm{Water}\ \mathrm{Appliances}\ \mathrm{Aging}\ \mathrm{Rate}\hfill \end{array} $$

Unit: Number/Month

$$ \mathrm{Indoor}\ \mathrm{Water}\ \mathrm{Appliances}\ \mathrm{Aging}\ \mathrm{Rate}=2\mathrm{E}-5 $$

Unit: Fraction/Month

$$ \begin{array}{l}\mathrm{NewIndoorWaterEfficienctAppliances}\hfill \\ {}\kern5em =\mathrm{DEALY}1\mathrm{I}\left(\frac{\mathrm{Expences}\ \mathrm{on}\ \mathrm{Indoor}\ \mathrm{Water}\ \mathrm{Appliances}\ \mathrm{Rebates}}{\mathrm{Budget}\ \mathrm{on}\ \mathrm{Every}\ \mathrm{Household}\ \mathrm{Indoor}},24,0\right)\hfill \end{array} $$

Number/Month

$$ \begin{array}{l}\begin{array}{l}\mathrm{Household}\ \mathrm{Indoor}\ \mathrm{Water}\ \mathrm{Efficient}\ \mathrm{Appliances}\hfill \\ {}\kern5em ={\displaystyle \int \left(\mathrm{New}\ \mathrm{Indoor}\ \mathrm{Water}\ \mathrm{Efficient}\ \mathrm{Appliances}\right.}\hfill \end{array}\hfill \\ {}\kern5em \left.-\mathrm{Aged}\ \mathrm{Indoor}\ \mathrm{Water}\ \mathrm{Appliances}\right)\mathrm{d}\mathrm{t}\hfill \\ {}\kern5em +\mathrm{Initial}\ \mathrm{Indoor}\ \mathrm{Water}\ \mathrm{Efficient}\ \mathrm{Appliances}\hfill \end{array} $$

Unit: Number

$$ \mathrm{Initial}\ \mathrm{Indoor}\ \mathrm{Water}\ \mathrm{Efficient}\ \mathrm{Appliances}=452858 $$

Unit: Number

$$ \mathrm{Indoor}\ \mathrm{Water}\ \mathrm{Appliances}\ \mathrm{per}\ \mathrm{Household}=4 $$

Unit: Number/Month

$$ \mathrm{Budget}\ \mathrm{on}\ \mathrm{Indoor}\ \mathrm{Water}\ \mathrm{Appliances}\ \mathrm{per}\ \mathrm{Household}=150 $$

Unit: Dollar/Number

$$ \begin{array}{l}\mathrm{ExpensesonIndoorWaterAppliancesRebates}\hfill \\ {}=\left\{\begin{array}{l} \min \left(\begin{array}{l}\mathrm{Potential}\ \mathrm{Budget}\ \mathrm{on}\ \mathrm{Indoor}\ \mathrm{Water}\ \mathrm{Appliances}\ \mathrm{Rebates},\hfill \\ {}\mathrm{Planned}\ \mathrm{Budget}\ \mathrm{on}\ \mathrm{Indoor}\ \mathrm{Water}\ \mathrm{Appliances}\ \mathrm{Rebates}\hfill \end{array}\right),1980\le \mathrm{year}\le 2010\hfill \\ {}\begin{array}{l}\kern2em \min \left(\begin{array}{l}\mathrm{Potential}\ \mathrm{Budget}\ \mathrm{on}\ \mathrm{Indoor}\ \mathrm{Water}\ \mathrm{Appliances}\ \mathrm{Rebates},\hfill \\ {}\mathrm{Planned}\ \mathrm{Budget}\ \mathrm{on}\ \mathrm{Indoor}\ \mathrm{Water}\ \mathrm{Appliances}\ \mathrm{Rebates}\hfill \end{array}\right),\mathrm{year}>2010\hfill \\ {}\kern3em +\mathrm{Additional}\ \mathrm{Budget}\ \mathrm{on}\ \mathrm{Indoor}\ \mathrm{Water}\ \mathrm{Appliances}\ \mathrm{Rebates}\hfill \end{array}\hfill \end{array}\right.\hfill \end{array} $$

Unit: Dollar/Month

$$ \mathrm{Potential}\ \mathrm{Budget}\ \mathrm{on}\ \mathrm{Indoor}\ \mathrm{Water}\ \mathrm{Appliances}\ \mathrm{Rebates}=500000/12 $$

Unit: Dollar/Month

$$ \begin{array}{l}\mathrm{New}\;\mathrm{Indoor}\;\mathrm{Water}\;\mathrm{Efficient}\;\mathrm{Appliances}\hfill \\ {}\kern3.24em =\mathrm{DELAY}1\mathrm{I}\left(\frac{\mathrm{Expenses}\;\mathrm{on}\;\mathrm{Indoor}\;\mathrm{Water}\;\mathrm{Appliances}\;\mathrm{Rebates}}{\mathrm{Budget}\;\mathrm{on}\;\mathrm{Every}\;\mathrm{Household}\;\mathrm{Indoor}},24,0\right)\hfill \end{array} $$

Number/Month

$$ \mathrm{Outdoor}\ \mathrm{Water}\ \mathrm{Demand}=\mathrm{Outdoor}\ \mathrm{Water}\ \mathrm{Demand}\ \mathrm{per}\ \mathrm{Capita}\times \mathrm{Population} $$

Unit: Gallon/Month

$$ \begin{array}{l}\mathrm{Outdoor}\ \mathrm{Water}\ \mathrm{Demand}\ \mathrm{per}\ \mathrm{Capita}\hfill \\ {}=\frac{\mathrm{Net}\ \mathrm{Water}\ \mathrm{Requirement}\ \mathrm{f}\mathrm{o}\mathrm{r}\ \mathrm{Lawn}\times \mathrm{Lawn}\ \mathrm{per}\ \mathrm{Person}\times \mathrm{Turf}\ \mathrm{Coverage}\ \mathrm{per}\ \mathrm{Unit}}{\mathrm{Outdoor}\ \mathrm{Water}\ \mathrm{Efficiency}}\hfill \\ {}\times \left(1\hbox{-} \mathrm{Reduction}\ \mathrm{due}\ \mathrm{t}\mathrm{o}\ \mathrm{Water}\ \mathrm{Price}\right)\times \left(1\hbox{-} \mathrm{Reduction}\ \mathrm{due}\ \mathrm{t}\mathrm{o}\ \mathrm{Restrictions}\right)\hfill \end{array} $$

Unit: Gallon/Person-Month

$$ \begin{array}{l}\mathrm{Reduction}\ \mathrm{due}\ \mathrm{t}\mathrm{o}\ \mathrm{Irrigation}\ \mathrm{Restriction}\hfill \\ {}\kern5em =\left\{\begin{array}{c}\hfill 0,\mathrm{year}<2002\hfill \\ {}\hfill \mathrm{Irrigation}\ \mathrm{Restriction}\ \mathrm{Lookup}\ \mathrm{Fucntion},\mathrm{year}\ge 2002\hfill \end{array}\right.\hfill \end{array} $$

Unit: Fraction/Month

$$ \begin{array}{l}\mathrm{Irrigation}\ \mathrm{Restriction}\ \mathrm{Lookup}\ \mathrm{Function}\hfill \\ {}\kern5em =\mathrm{WITH}\ \mathrm{LOOKUP}\left(\mathrm{Maximum}\ \mathrm{Weekly}\ \mathrm{Irrigation}\ \mathrm{Times},\left(\left[\left(0,0\right.\right.\right.\right)\hfill \\ {}\kern5em \left.-\left.1000,40\right)\right],\left(0,1\right),\left(1,0.5\right),\left(2,0.3\right),\left(3,0\right)\left.\left.\left(10,0\right)\right)\right)\hfill \end{array} $$

Unit: Fraction

$$ \begin{array}{l}\mathrm{N}\mathrm{e}\mathrm{t}\mathrm{WaterRequirment}\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{Lawn}\hfill \\ {}\kern5em =\left\{\begin{array}{c}\hfill 0,\mathrm{N}\mathrm{e}\mathrm{t}\ \mathrm{Precipiation}\ge \mathrm{Crop}\ \mathrm{E}\mathrm{T}\hfill \\ {}\hfill \mathrm{Crop}\ \mathrm{E}\mathrm{T}\hbox{-} \mathrm{N}\mathrm{e}\mathrm{t}\ \mathrm{Precipiation},\mathrm{N}\mathrm{e}\mathrm{t}\ \mathrm{Precipiation}<\mathrm{Crop}\ \mathrm{E}\mathrm{T}\hfill \end{array}\right.\hfill \end{array} $$

Unit: Inch/Crop

$$ \mathrm{Turf}\ \mathrm{E}\mathrm{T}\ \mathrm{Coefficeint}=1.05 $$

Unit: Dimensionless

$$ \mathrm{Effective}\ \mathrm{Precipitation}=\mathrm{Precipitation}\ \mathrm{Rate}\times \mathrm{Effective}\ \mathrm{Precipitation}\ \mathrm{Ratio} $$

Unit: Inch/Month

$$ \mathrm{Effective}\ \mathrm{Precipitation}\ \mathrm{Ratio}=0.7 $$

Unit: Fraction

$$ \begin{array}{l}\begin{array}{l}\mathrm{HouseholdOutdoorWaterEfficientAppliances}\hfill \\ {}\kern6em ={\displaystyle \int \left(\mathrm{New}\ \mathrm{Outdoor}\ \mathrm{Water}\ \mathrm{Efficient}\ \mathrm{Appliances}\right)}\hfill \end{array}\hfill \\ {}\kern6em \left.-\mathrm{Aged}\ \mathrm{Outdoor}\ \mathrm{Water}\ \mathrm{Appliances}\right)\mathrm{d}\mathrm{t}\hfill \\ {}\kern6em +\mathrm{Initial}\ \mathrm{Outdoor}\ \mathrm{Water}\ \mathrm{Efficient}\ \mathrm{Appliances}\hfill \end{array} $$

Unit: Number

$$ \mathrm{Initial}\ \mathrm{Outdoor}\ \mathrm{Water}\ \mathrm{Efficient}\ \mathrm{Appliances}=32347 $$

Unit: Number

$$ \begin{array}{l}\mathrm{AgedOutdoorWaterAppliances}\hfill \\ {}\kern6em =\mathrm{Household}\ \mathrm{Outdoor}\ \mathrm{Water}\ \mathrm{Efficient}\ \mathrm{Appliances}\hfill \\ {}\kern6em \times \mathrm{Outdoor}\ \mathrm{Water}\ \mathrm{Appliances}\ \mathrm{Aging}\ \mathrm{Rate}\hfill \end{array} $$

Unit: Number/Month

$$ \mathrm{Outdoor}\ \mathrm{Water}\ \mathrm{Appliances}\ \mathrm{Aging}\ \mathrm{Rate}=1\mathrm{E}\hbox{-} 5 $$

Unit: Fraction/Month

$$ \begin{array}{l}\mathrm{NewOutdoorWaterEfficientAppliances}\hfill \\ {}\kern6em =\mathrm{DELAY}1\mathrm{I}\left(\frac{\mathrm{Expenses}\ \mathrm{on}\ \mathrm{Outdoor}\ \mathrm{Water}\ \mathrm{Appliances}\ \mathrm{Rebates}}{\mathrm{Budget}\ \mathrm{on}\ \mathrm{Outdoor}\ \mathrm{Appliances}\ \mathrm{per}\ \mathrm{Household}},18,0\right)\hfill \end{array} $$

Number/Month

$$ \begin{array}{l}\mathrm{ExpensesonOutdoorWaterAppliancesRebates}\hfill \\ {}=\left\{\begin{array}{l} \min \left(\begin{array}{l}\mathrm{Potential}\ \mathrm{Budget}\ \mathrm{on}\ \mathrm{Outdoor}\ \mathrm{Water}\ \mathrm{Appliances}\ \mathrm{Rebates},\hfill \\ {}\mathrm{Planned}\ \mathrm{Budget}\ \mathrm{on}\ \mathrm{Outdoor}\ \mathrm{Water}\ \mathrm{Appliances}\ \mathrm{Rebates}\hfill \end{array}\right),1980\le \mathrm{year}\le 2010\hfill \\ {}\kern2em \min \left(\begin{array}{c}\hfill \mathrm{Potential}\ \mathrm{Budget}\ \mathrm{on}\ \mathrm{Outdoor}\ \mathrm{Water}\ \mathrm{Appliances}\ \mathrm{Rebates},\hfill \\ {}\hfill \mathrm{Planned}\ \mathrm{Budget}\ \mathrm{on}\ \mathrm{Outdoor}\ \mathrm{Water}\ \mathrm{Appliances}\ \mathrm{Rebates}\hfill \end{array}\right),\mathrm{year}>2010\hfill \\ {}\kern3em +\mathrm{Additional}\ \mathrm{Budget}\ \mathrm{on}\ \mathrm{Outdoor}\ \mathrm{Water}\ \mathrm{Appliances}\ \mathrm{Rebates}\hfill \end{array}\right.\hfill \end{array} $$

Unit: Dollar/Month

$$ \begin{array}{l}\mathrm{NewOutdoorWaterEfficientAppliances}\hfill \\ {}\kern6em =\mathrm{DELAY}1\mathrm{I}\left(\frac{\mathrm{Expenses}\ \mathrm{on}\ \mathrm{Outdoor}\ \mathrm{Water}\ \mathrm{Appliances}\ \mathrm{Rebates}}{\mathrm{Budget}\ \mathrm{on}\ \mathrm{Outdoor}\ \mathrm{Appliances}\ \mathrm{per}\ \mathrm{Household}},18,0\right)\hfill \end{array} $$

Unit: Number/Month

$$ \mathrm{Budget}\ \mathrm{on}\ \mathrm{Outdoor}\ \mathrm{Appliances}\ \mathrm{per}\ \mathrm{Householde}=200 $$

Unit: Dollar/Number

$$ \begin{array}{l}\mathrm{MaximumOutdoorWaterEfficientAppliances}\hfill \\ {}\kern5em =\mathrm{Outdoor}\ \mathrm{Water}\ \mathrm{Appliances}\ \mathrm{per}\ \mathrm{Household}\times \frac{\mathrm{Initial}\ \mathrm{Population}}{\mathrm{People}\ \mathrm{per}\ \mathrm{Household}}\hfill \\ {}\kern5em +\mathrm{DELAY}1\mathrm{I}\left(\frac{\mathrm{Population}\hbox{-} \mathrm{Initial}\ \mathrm{Population}}{\mathrm{People}\ \mathrm{per}\ \mathrm{Household}}\right.\hfill \\ {}\kern5em \left.\times \kern0.5em \mathrm{Outdoor}\ \mathrm{Water}\ \mathrm{Appliances}\ \mathrm{per}\ \mathrm{Household},36\right)\times 0.3\hfill \end{array} $$

Unit: Number

$$ \mathrm{Potential}\ \mathrm{Budget}\ \mathrm{on}\ \mathrm{Outdoor}\ \mathrm{Water}\ \mathrm{Appliances}\ \mathrm{Rebates}=500000/12 $$

Unit: Dollar/Month

$$ \begin{array}{l}\mathrm{Surface}\mathrm{Water}\mathrm{Storage}\hfill \\ {}\kern6em ={\displaystyle \int \left(\mathrm{Precipitation}+\mathrm{Runoff}+\mathrm{Surface}\ \mathrm{Water}\ \mathrm{Discharge}\right.}\hfill \\ {}\kern6em +\mathrm{Surface}\ \mathrm{Water}\ \mathrm{Inflow}\hbox{-} \mathrm{Evaporation}\hfill \\ {}\kern6em -\mathrm{Infiltration}\ \mathrm{from}\ \mathrm{Surface}\ \mathrm{Water}\hbox{-} \mathrm{Surface}\ \mathrm{Water}\ \mathrm{Outflow}\hfill \\ {}\kern6em \left.-\mathrm{Surface}\ \mathrm{Water}\ \mathrm{Withdrawal}\right)\mathrm{d}\mathrm{t}+\mathrm{Initial}\ \mathrm{Surface}\ \mathrm{Water}\ \mathrm{Level}\hfill \\ {}\kern6em \times \mathrm{Surface}\ \mathrm{Water}\ \mathrm{Area}\times 2.09\mathrm{e}08\hfill \end{array} $$

Unit: Gallon

$$ \begin{array}{l}\mathrm{Surface}\mathrm{Water}\mathrm{Availability}\hfill \\ {}={\displaystyle \left\{\left(\mathrm{Surface}\ \mathrm{Water}\mathrm{Level} - \mathrm{Minimum}\ \mathrm{Surface}\ \mathrm{Water}\ \mathrm{Level}\right)\times \frac{\mathrm{Surface}\ \mathrm{Water}\ \mathrm{Area}\times 2.09\mathrm{e}08}{\begin{array}{r}\hfill \mathrm{Time}\ \mathrm{f}\mathrm{o}\mathrm{r}\ \mathrm{Supply}\\ {}\hfill 0,\mathrm{Otherwise}\end{array}},\mathrm{SurfaceWaterLevel}>\mathrm{MinimumSurfaceWaterLevel}\right)}\hfill \end{array} $$

Unit: Gallon/Month

$$ \begin{array}{l}\mathrm{Surface}\mathrm{Water}\mathrm{Withdrawal}\hfill \\ {}\kern5em = \min \left(\mathrm{Surface}\ \mathrm{Water}\ \mathrm{Availability},\ \mathrm{Surface}\ \mathrm{Water}\ \mathrm{Demand}\right)\hfill \end{array} $$

Unit: Gallon/Month

$$ \begin{array}{l}\mathrm{GroundwaterStorage}\hfill \\ {}\kern6em ={\displaystyle \int \left(\mathrm{Groundwater}\ \mathrm{Inflow}+\mathrm{Groundwater}\ \mathrm{Recharge}+\mathrm{Percolation}\right.}\hfill \\ {}\kern6em +\mathrm{Seawater}\ \mathrm{Intrusion}\hbox{-} \mathrm{Groundwater}\ \mathrm{Outflow}\hfill \\ {}\left.\kern6em -\mathrm{Groundwater}\ \mathrm{Withdrawal}\right)\mathrm{d}\mathrm{t}+\mathrm{Aquifer}\ \mathrm{Area}\times 1500\times 2.09\mathrm{e}08\hfill \end{array} $$

Unit: Gallon

$$ \begin{array}{l}\mathrm{GroundWaterAvailability}\hfill \\ {}={\displaystyle \left\{\left(\mathrm{Surface}\ \mathrm{GroundwaterTable} - \mathrm{Groundwater}\ \mathrm{Table}\ \mathrm{t}\mathrm{o}\ \mathrm{Surface}\right)\times \frac{\mathrm{Aquifer}\ \mathrm{Area}\times 2.09\mathrm{e}08}{\begin{array}{r}\hfill \mathrm{Time}\ \mathrm{f}\mathrm{o}\mathrm{r}\ \mathrm{Supply}\\ {}\hfill 0,\mathrm{Otherwise}\end{array}},\mathrm{MinimumGroundwaterTable}>\mathrm{GroundwaterTable}\mathrm{t}\mathrm{o}\mathrm{Surface}\right)}\hfill \end{array} $$

Unit: Gallon/Month

$$ \begin{array}{l}\mathrm{Ground}\mathrm{waterWithdrawal}\hfill \\ {}\kern6em = \min \left(\mathrm{Ground}\ \mathrm{Water}\ \mathrm{Availability},\ \mathrm{Ground}\ \mathrm{Water}\ \mathrm{Demand}\right)\hfill \end{array} $$

Unit: Gallon/Month

$$ \mathrm{Depth}\ \mathrm{of}\ \mathrm{Soil}\ \mathrm{Layer}=80 $$

Unit: Inch

$$ \mathrm{Field}\ \mathrm{Capacity}=\mathrm{Depth}\ \mathrm{of}\ \mathrm{Soil}\ \mathrm{Layer}\times \mathrm{Field}\ \mathrm{Caopacity}\ \mathrm{Fraction}\times \mathrm{Soil}\ \mathrm{Area} $$

Unit: Gallon/Month

$$ \mathrm{Field}\ \mathrm{Capacity}\ \mathrm{Fraction}=0.3 $$

Unit: Fraction

$$ \begin{array}{l}\mathrm{InfiltrationfromPrecicpitation}\hfill \\ {}\kern6em = \min \left(\mathrm{Difference}\ \mathrm{between}\ \mathrm{Soil}\ \mathrm{Storage}\ \mathrm{and}\ \mathrm{Capacity}\right.\hfill \\ {}\kern6em /\left.1,\ \mathrm{Precipitation}\ \mathrm{Reaching}\ \mathrm{Soil}\right)\hfill \end{array} $$

Unit: Gallon/Month

$$ \begin{array}{l}\mathrm{Difference}\ \mathrm{between}\ \mathrm{Soil}\ \mathrm{Storage}\ \mathrm{and}\ \mathrm{Capacity}\hfill \\ {}\kern6em =\mathrm{Soil}\ \mathrm{Water}\ \mathrm{Saturation}\ \mathrm{Capacity}\hbox{-} \mathrm{Soil}\ \mathrm{Water}\ \mathrm{Storage}\hfill \end{array} $$

Unit: Gallon

$$ \begin{array}{l}\mathrm{PrecipitationReachingSoil}\hfill \\ {}\kern5em =\mathrm{Precipitation}\ \mathrm{Rate}\times \left(1\hbox{-} \mathrm{Interception}\ \mathrm{Ratio}\right)\times \mathrm{Permeable}\ \mathrm{Land}\hfill \end{array} $$

Unit: Gallon/Month

$$ \mathrm{Field}\ \mathrm{Capacity}=\mathrm{Depth}\ \mathrm{of}\ \mathrm{Soil}\ \mathrm{Layer}\times \mathrm{Field}\ \mathrm{Capacity}\ \mathrm{Fraction}\times \mathrm{Soil}\ \mathrm{Area} $$

Unit: Gallon/Month

$$ \mathrm{Field}\ \mathrm{Capacity}\ \mathrm{Fraction}=0.1 $$

Unit: Fraction

$$ \mathrm{Percolation}= \max \left(\mathrm{Percolation}\ \mathrm{Surplus},0\right) $$

Unit: Gallon/Month

$$ \mathrm{Percolation}\ \mathrm{Surplus}=\mathrm{Soil}\ \mathrm{Water}\ \mathrm{Storage}\hbox{-} \mathrm{Field}\ \mathrm{Capacity} $$

Unit: Gallon/Month

$$ \begin{array}{l}\mathrm{Soil}\mathrm{Water}\mathrm{Storage}\hfill \\ {}\kern6em {\displaystyle \int \left(\mathrm{Infiltration}\ \mathrm{from}\ \mathrm{Precipitation}\right.}\hfill \\ {}\kern6em +\mathrm{Infiltration}\ \mathrm{from}\ \mathrm{Surface}\ \mathrm{Water}\hbox{-} \mathrm{Percolation}\hfill \\ {}\kern6em \left.-\mathrm{Soil}\ \mathrm{Evapotranspiration}\right)\mathrm{d}\mathrm{t}+\mathrm{Initial}\ \mathrm{Soil}\ \mathrm{Water}\ \mathrm{Storage}\hfill \end{array} $$

Unit: Gallon

$$ \mathrm{Initial}\ \mathrm{Soil}\ \mathrm{Water}\ \mathrm{Storage}=0.5\times \mathrm{Soil}\ \mathrm{Water}\ \mathrm{Saturation}\ \mathrm{Capacity} $$

Unit: Gallon/Month

$$ \mathrm{Seawater}\mathrm{Intrusion}=\Big\{\begin{array}{r}\hfill \mathrm{DELAY3}\left(\mathrm{SeawaterLevel}-\mathrm{LevelTable}\mathrm{t}\mathrm{o}\mathrm{Surface}\right)\times \mathrm{IntrusionArea,SeawaterLevel}>\mathrm{GrounwaterTable}\mathrm{t}\mathrm{o}\mathrm{Surface}\\ {}0,\mathrm{Otherwise}\hfill \end{array} $$

Unit: Gallon/Month

$$ \begin{array}{l}\mathrm{Soil}\mathrm{Water}\mathrm{Saturation}\mathrm{Capacity}\hfill \\ {}\begin{array}{l}\kern6em =\mathrm{Soil}\ \mathrm{Water}\ \mathrm{Saturation}\ \mathrm{Capacity}\ \mathrm{Fraction}\times \mathrm{Depth}\ \mathrm{of}\ \mathrm{Soil}\ \mathrm{Layer}\hfill \\ {}\kern6em \times \mathrm{SoilArea}\hfill \end{array}\hfill \end{array} $$

Unit: Gallon/Month

$$ \mathrm{Soil}\ \mathrm{Water}\ \mathrm{Saturation}\ \mathrm{Capacity}\ \mathrm{Fraction}=0.5 $$

Unit: Inch/Inch

$$ \begin{array}{l}\begin{array}{l}\mathrm{Reclaimed}\mathrm{Water}\mathrm{Expansion}\hfill \\ {}\kern6em =\mathrm{DELAY}3\left(\mathrm{Expansion}\ \mathrm{o}\mathrm{n}\ \mathrm{Reclaimed}\ \mathrm{Water}\ \mathrm{Expansion}\right.\hfill \end{array}\hfill \\ {}\kern6em \left./\mathrm{Unit}\ \mathrm{Cost}\ \mathrm{f}\mathrm{o}\mathrm{r}\ \mathrm{Reclaimed}\ \mathrm{Water}\ \mathrm{Expansion},\ 24\right)\hfill \end{array} $$

Unit: Gallon/Month

$$ \mathrm{Reclaimed}\ \mathrm{Water}\ \mathrm{Capacity}={\displaystyle \int \left(\mathrm{Reclaimed}\ \mathrm{Water}\ \mathrm{Expansion}\right)\mathrm{d}\mathrm{t}} $$

Unit: Gallon

$$ \begin{array}{l}\begin{array}{l}\mathrm{Reclaimed}\mathrm{Water}\mathrm{Expansion}\hfill \\ {}\kern6em =\mathrm{DELAY}3\left(\mathrm{Expansion}\ \mathrm{o}\mathrm{n}\ \mathrm{Reclaimed}\ \mathrm{Water}\ \mathrm{Expansion}\right.\hfill \end{array}\hfill \\ {}\kern6em \left./\mathrm{Unit}\ \mathrm{Cost}\ \mathrm{f}\mathrm{o}\mathrm{r}\ \mathrm{Reclaimed}\ \mathrm{Water}\ \mathrm{Expansion},\ 24\right)\hfill \end{array} $$

Unit: Gallon/Month

$$ \begin{array}{l}\mathrm{Reclaimed}\mathrm{Water}\mathrm{Supply}\hfill \\ {}\kern6em = \min \left(\mathrm{Reclaimed}\ \mathrm{Water}\ \mathrm{Demand},\ \mathrm{Reclaimed}\ \mathrm{Water}\ \mathrm{Capacity}\right)\hfill \end{array} $$

Unit: Gallon/Month

$$ \begin{array}{l}\mathrm{PotentialReclaimedWaterDemand}\hfill \\ {}\kern6em =\mathrm{People}\ \mathrm{with}\ \mathrm{Reclaimed}\ \mathrm{Water}\ \mathrm{Acceptance}\hfill \\ {}\kern6em \times \mathrm{Reclaimed}\ \mathrm{Water}\ \mathrm{Demand}\ \mathrm{per}\ \mathrm{Capita}\hfill \end{array} $$

Unit: Gallon/Month

Major Sources:

Southwest Florida Water Management District (SWFWMD). 2010a. Alternative Water Supplies: 2010 Annual Report.

Southwest Florida Water Management District (SWFWMD). 2005. Annual Agency Reuse Report, 2004

Southwest Florida Water Management District (SWFWMD). 2010b. Economic Feasibility of Reclaimed Water Use by Non-Utility Water Use Permittees and Applicants—Final Report.

Southwest Florida Water Management District (SWFWMD). 2003. Estimated Water Use Report, 2001

Southwest Florida Water Management District (SWFWMD). 2004. Estimated Water Use Report Addendum, 2001

Southwest Florida Water Management District (SWFWMD). 2004. Estimated Water Use Report Summary, 1998–2002

Southwest Florida Water Management District (SWFWMD). 2004. Estimated Water Use Report, 2002

Southwest Florida Water Management District (SWFWMD). 2006. Estimated Water Use Report, 2003–2004.

Southwest Florida Water Management District (SWFWMD). 2007. Estimated Water Use Report, 2005.

Southwest Florida Water Management District (SWFWMD). 2008. Estimated Water Use Report, 2006.

Southwest Florida Water Management District (SWFWMD). 2009. Estimated Water Use Report, 2007.

Southwest Florida Water Management District (SWFWMD). 2010. Estimated Water Use Report, 2008.

Southwest Florida Water Management District (SWFWMD). 2011. Estimated Water Use Report, 2009.

Southwest Florida Water Management District (SWFWMD). 2012. Estimated Water Use Report, 2010.

Southwest Florida Water Management District (SWFWMD). 2013. Estimated Water Use Report, 2011.

Southwest Florida Water Management District (SWFWMD). 2014. Estimated Water Use Report, 2012.

Yingling, J.W., Carter, D., Hopkins, J., et al., 1999. Estimated 1997 Water and Wastewater Charges in the Southwest Florida Water Management District. Southwest Florida Water Management District.

John B. W. 2005. Evaluation of Florida Single Family Residential Water Rates, Southwest Florida Water Management District.

Appendix 2

Table 5 Key water quality parameters and standards

Appendix 3

Table 6 Historical precipitation and reference evapotranspiration

Appendix 4

Fig. 6
figure 6

Extreme condition tests for model validation: a extreme condition for population, b extreme condition for precipitation

Appendix 5

Fig. 7
figure 7

Sensitivity analysis for model validation: a sensitivity of outdoor water demand to precipitation, b sensitivity of surface water level to precipitation

Appendix 6

Fig. 8
figure 8

Model behavior pattern test: a comparison of historic municipal water withdrawals and model simulation from 1980 to 2008, b comparison of surface water level and model simulation from 1980 to 2005

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhuang, Y., Zhang, Q. Evaluating Municipal Water Management Options with the Incorporation of Water Quality and Energy Consumption. Water Resour Manage 29, 35–61 (2015). https://doi.org/10.1007/s11269-014-0825-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11269-014-0825-6

Keywords

Navigation