Skip to main content
Log in

L3AM: Linear Adaptive Additive Angular Margin Loss for Video-Based Hand Gesture Authentication

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

Feature extractors significantly impact the performance of biometric systems. In the field of hand gesture authentication, existing studies focus on improving the model architectures and behavioral characteristic representation methods to enhance their feature extractors. However, loss functions, which can guide extractors to produce more discriminative identity features, are neglected. In this paper, we improve the margin-based Softmax loss functions, which are mainly designed for face authentication, in two aspects to form a new loss function for hand gesture authentication. First, we propose to replace the commonly used cosine function in the margin-based Softmax losses with a linear function to measure the similarity between identity features and proxies (the weight matrix of Softmax, which can be viewed as class centers). With the linear function, the main gradient magnitude decreases monotonically as the quality of the model improves during training, thus allowing the model to be quickly optimized in the early stage and precisely fine-tuned in the late stage. Second, we design an adaptive margin scheme to assign margin penalties to different samples according to their separability and the model quality in each iteration. Our adaptive margin scheme constrains the gradient magnitude. It can reduce radical (excessively large) gradient magnitudes and provide moderate (not too small) gradient magnitudes for model optimization, contributing to more stable training. The linear function and the adaptive margin scheme are complementary. Combining them, we obtain the proposed linear adaptive additive angular margin (L3AM) loss. To demonstrate the effectiveness of L3AM loss, we conduct extensive experiments on seven hand-related authentication datasets, compare it with 25 state-of-the-art (SOTA) loss functions, and apply it to eight SOTA hand gesture authentication models. The experimental results show that L3AM loss further improves the performance of the eight authentication models and outperforms the 25 losses. The code is available at https://github.com/SCUT-BIP-Lab/L3AM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availibility

The used datasets are available in literature (Liu et al., 2020; Hao et al., 2007; Zhang et al., 2010, 2017). The proposed method can be downloaded from https://github.com/SCUT-BIP-Lab/L3AM.

References

  • Aumi, M. T. I., & Kratz, S. G. (2014). Airauth: Evaluating in-air hand gestures for authentication. In MobileHCI ’14.

  • Bai, Y., Zou, Q., Chen, X., Li, L., Ding, Z., & Chen, L. (2023). Extreme low-resolution action recognition with confident spatial–temporal attention transfer. International Journal of Computer Vision, 131(6), 1550–1565.

    Article  Google Scholar 

  • Bajaber, A., Fadel, M., & Elrefaei, L. A. (2022). Evaluation of deep learning models for person authentication based on touch gesture. Computer Systems Science and Engineering, 42, 465–481.

    Article  Google Scholar 

  • Boutros, F., Damer, N., Kirchbuchner, F., & Kuijper, A. (2022). Elasticface: Elastic margin loss for deep face recognition. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 1578–1587).

  • Carreira, J., & Zisserman, A. (2017). Quo vadis, action recognition? A new model and the kinetics dataset. In 2017 IEEE conference on computer vision and pattern recognition (CVPR) (pp. 4724–4733).

  • Chan, F.K.-S., Li, X., & Kong, A.W.-K. (2017). A study of distinctiveness of skin texture for forensic applications through comparison with blood vessels. IEEE Transactions on Information Forensics and Security, 12, 1900–1915.

    Article  Google Scholar 

  • Chopra, S., Hadsell, R., & LeCun, Y. (2005). Learning a similarity metric discriminatively, with application to face verification. In 2005 IEEE computer society conference on computer vision and pattern recognition (CVPR’05) (Vol. 1, pp. 539–5461).

  • Deng, J., Guo, J., Yang, J., Xue, N., Kotsia, I., & Zafeiriou, S. (2022). Arcface: Additive angular margin loss for deep face recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(10), 5962–5979.

    Article  Google Scholar 

  • Farnebäck, G. (2003). Two-frame motion estimation based on polynomial expansion. In Scandinavian conference on image analysis (pp. 363–370). Springer.

  • Ferrer, M. A., & Morales, A. (2011). Hand-shape biometrics combining the visible and short-wave infrared bands. IEEE Transactions on Information Forensics and Security, 6(4), 1305–1314.

    Article  Google Scholar 

  • Han, C., Shan, S., Kan, M., Wu, S., & Chen, X. (2022). Personalized convolution for face recognition. International Journal of Computer Vision, 1–19.

  • Hao, Y., Sun, Z., & Tan, T. (2007). Comparative studies on multispectral palm image fusion for biometrics. In Asian conference on computer vision. 130(2), 344–362.

  • He, L., Wang, Z., Li, Y., & Wang, S. (2020). Softmax dissection: Towards understanding intra-and inter-class objective for embedding learning. In Proceedings of the AAAI conference on artificial intelligence (Vol. 34, pp. 10957–10964).

  • Huang, Y., Wang, Y., Tai, Y., Liu, X., Shen, P., Li, S., Li, J., & Huang, F. (2020). Curricularface: Adaptive curriculum learning loss for deep face recognition. In 2020 IEEE/CVF conference on computer vision and pattern recognition (CVPR) (pp. 5900–5909).

  • Imura, S., & Hosobe, H. (2018). A hand gesture-based method for biometric authentication. In HCI.

  • Jiang, X., Liu, X., Fan, J., Ye, X., Dai, C., Clancy, E. A., & Chen, W. (2022). Measuring neuromuscular electrophysiological activities to decode hd-semg biometrics for cross-application discrepant personal identification with unknown identities. IEEE Transactions on Instrumentation and Measurement, 71, 1–15.

    Google Scholar 

  • Jiang, X., Xu, K., Liu, X., Dai, C., Clifton, D. A., Clancy, E. A., Akay, M., & Chen, W. (2021). Neuromuscular password-based user authentication. IEEE Transactions on Industrial Informatics, 17, 2641–2652.

    Article  Google Scholar 

  • Jiao, J., Liu, W., Mo, Y., Jiao, J., Deng, Z.-L., & Chen, X. (2021). Dyn-arcface: Dynamic additive angular margin loss for deep face recognition. Multimedia Tools and Applications, 80, 25741–25756.

    Article  Google Scholar 

  • Li, Q., Luo, Z., & Zheng, J. (2022). A new deep anomaly detection-based method for user authentication using multichannel surface emg signals of hand gestures. IEEE Transactions on Instrumentation and Measurement, 71, 1–11.

    Article  Google Scholar 

  • Liu, C., Kang, W., Fang, L., & Liang, N. (2019). Authentication system design based on dynamic hand gesture. In CCBR.

  • Liu, C., Yang, Y., Liu, X., Fang, L., & Kang, W. (2020). Dynamic-hand-gesture authentication dataset and benchmark. IEEE Transactions on Information Forensics and Security, 16, 1550–1562.

    Article  Google Scholar 

  • Liu, H., Dai, L., Hou, S., Han, J., & Liu, H. (2019). Are mid-air dynamic gestures applicable to user identification? Pattern Recognition Letters, 117, 179–185.

    Article  Google Scholar 

  • Liu, H., Zhu, X., Lei, Z., Li, S. (2019). Adaptiveface: Adaptive margin and sampling for face recognition. In 2019 IEEE/CVF conference on computer vision and pattern recognition (CVPR), 11939–11948.

  • Liu, F., Liu, G., Zhang, W., Wang, L., & Shen, L. (2022). A novel high-resolution fingerprint representation method. IEEE Transactions on Biometrics, Behavior, and Identity Science, 4(2), 289–300.

    Article  Google Scholar 

  • Liu, W., Lin, R., Liu, Z., Liu, L., Yu, Z., Dai, B., & Song, L. (2018). Learning towards minimum hyperspherical energy. Advances in Neural Information Processing Systems, 31, 1–12.

  • Liu, W., Wen, Y., Raj, B., Singh, R., & Weller, A. (2023). Sphereface revived: Unifying hyperspherical face recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(2), 2458–2474.

    Article  Google Scholar 

  • Liu, W., Wen, Y., Yu, Z., Li, M., Raj, B., & Song, L. (2017). Sphereface: Deep hypersphere embedding for face recognition. In 2017 IEEE conference on computer vision and pattern recognition (CVPR) (pp. 6738–6746).

  • Matkowski, W. M., Chai, T., & Kong, A. W. K. (2020). Palmprint recognition in uncontrolled and uncooperative environment. IEEE Transactions on Information Forensics and Security, 15, 1601–1615.

    Article  Google Scholar 

  • Meng, Q., Zhao, S., Huang, Z., & Zhou, F. (2021). Magface: A universal representation for face recognition and quality assessment. In 2021 IEEE/CVF conference on computer vision and pattern recognition (CVPR) (pp. 14220–14229).

  • Peng, G., Zhou, G., Nguyen, D. T., Qi, X., Yang, Q., & Wang, S. (2017). Continuous authentication with touch behavioral biometrics and voice on wearable glasses. IEEE Transactions on Human-Machine Systems, 47, 404–416.

    Article  Google Scholar 

  • Sae-Bae, N., Memon, N. D., Isbister, K., & Ahmed, K. (2014). Multitouch gesture-based authentication. IEEE Transactions on Information Forensics and Security, 9, 568–582.

    Article  Google Scholar 

  • Schroff, F., Kalenichenko, D., & Philbin, J. (2015). Facenet: A unified embedding for face recognition and clustering. In 2015 IEEE Conference on computer vision and pattern recognition (CVPR) (pp. 815–823).

  • Shen, C., Wang, Z., Si, C., Chen, Y., & Su, X. (2020). Waving gesture analysis for user authentication in the mobile environment. IEEE Network, 34, 57–63.

    Article  Google Scholar 

  • Shirazi, A. S., Moghadam, P., Ketabdar, H., & Schmidt, A. (2012). Assessing the vulnerability of magnetic gestural authentication to video-based shoulder surfing attacks. In Proceedings of the SIGCHI conference on human factors in computing systems.

  • Simonyan, K., & Zisserman, A. (2014). Two-stream convolutional networks for action recognition in videos. In NIPS.

  • Song, W., Fang, L., Lin, Y., Zeng, M., & Kang, W. (2022). Dynamic hand gesture authentication based on improved two-stream cnn. In CCBR.

  • Song, W., & Kang, W. (2023). Depthwise temporal non-local network for faster and better dynamic hand gesture authentication. IEEE Transactions on Information Forensics and Security, 18, 1870–1883.

    Article  Google Scholar 

  • Song, W., Kang, W., & Lin, L. (2023). Hand gesture authentication by discovering fine-grained spatiotemporal identity characteristics. IEEE Transactions on Circuits and Systems for Video Technology, 34(1), 461–474.

  • Song, W., Kang, W., Wang, L., Lin, Z., & Gan, M. (2022). Video understanding-based random hand gesture authentication. IEEE Transactions on Biometrics, Behavior, and Identity Science, 4(4), 453–470.

    Article  Google Scholar 

  • Song, W., Kang, W., Yang, Y., Fang, L., Liu, C., & Liu, X. (2021). Tds-net: Towards fast dynamic random hand gesture authentication via temporal difference symbiotic neural network. In 2021 IEEE international joint conference on biometrics (IJCB) (pp. 1–8).

  • Song, W., Kang, W., & Zhang, Y. (2023). Understanding physiological and behavioral characteristics separately for high-performance video-based hand gesture authentication. IEEE Transactions on Instrumentation and Measurement, 72, 1–13.

  • Sun, J., Yang, W., Xue, J.-H., & Liao, Q. (2020). An equalized margin loss for face recognition. IEEE Transactions on Multimedia, 22, 2833–2843.

    Article  Google Scholar 

  • Sun, Y., Cheng, C., Zhang, Y., Zhang, C., Zheng, L., Wang, Z., & Wei, Y. (2020). Circle loss: A unified perspective of pair similarity optimization. In 2020 IEEE/CVF conference on computer vision and pattern recognition (CVPR), (pp. 6397–6406).

  • Sun, Z., Wang, Y., Qu, G., & Zhou, Z. (2016). A 3-d hand gesture signature based biometric authentication system for smartphones. Security and Communication Networks, 9, 1359–1373.

    Article  Google Scholar 

  • Supančič, J. S., Rogez, G., Yang, Y., Shotton, J., & Ramanan, D. (2018). Depth-based hand pose estimation: Methods, data, and challenges. International Journal of Computer Vision, 126, 1180–1198.

    Article  Google Scholar 

  • Tolosana, R., Vera-Rodríguez, R., Fierrez, J., & Ortega-Garcia, J. (2021). Deepsign: Deep on-line signature verification. IEEE Transactions on Biometrics, Behavior, and Identity Science, 3, 229–239.

    Article  Google Scholar 

  • Venkat, I., & Wilde, P. D. (2010). Robust gait recognition by learning and exploiting sub-gait characteristics. International Journal of Computer Vision, 91, 7–23.

    Article  Google Scholar 

  • Wang, H., Chen, T., Liu, X., & Chen, J. (2020). Exploring the hand and finger-issued behaviors toward natural authentication. IEEE Access, 8, 55815–55825.

    Article  Google Scholar 

  • Wang, H., Wang, Y., Zhou, Z., Ji, X., Li, Z., Gong, D., Zhou, J., & Liu, W. (2018). Cosface: Large margin cosine loss for deep face recognition. In 2018 IEEE/CVF conference on computer vision and pattern recognition (pp. 5265–5274).

  • Wang, F., Xiang, X., Cheng, J., & Yuille, A. L. (2017). Normface: L2 hypersphere embedding for face verification. In Proceedings of the 25th ACM international conference on Multimedia.

  • Wang, L., Xiong, Y., Wang, Z., Qiao, Y., Lin, D., Tang, X., & Gool, L. V. (2019). Temporal segment networks for action recognition in videos. IEEE Transactions on Pattern Analysis and Machine Intelligence, 41, 2740–2755.

    Article  Google Scholar 

  • Wang, P., Li, W., Ogunbona, P., Wan, J., & Escalera, S. (2018). Rgb-d-based human motion recognition with deep learning: A survey. Computer Vision and Image Understanding, 171, 118–139.

    Article  Google Scholar 

  • Wang, X., Zhang, S., Wang, S., Fu, T., Shi, H., & Mei, T. (2019). Mis-classified vector guided softmax loss for face recognition. In AAAI conference on artificial intelligence.

  • Wang, X., & Tanaka, J. (2018). Gesid: 3D gesture authentication based on depth camera and one-class classification. Sensors, 18, 3265.

    Article  Google Scholar 

  • Wen, Y., Liu, W., Weller, A., Raj, B., & Singh, R. (2022). Sphereface2: Binary classification is all you need for deep face recognition. In International conference on learning representations.

  • Wen, Y., Zhang, K., Li, Z., & Qiao, Y. (2016). A discriminative feature learning approach for deep face recognition. In European conference on computer vision.

  • Wong, A. M. H., Furukawa, M., & Maeda, T. (2020). Robustness of rhythmic-based dynamic hand gesture with surface electromyography (semg) for authentication. Electronics, 9, 2143.

    Article  Google Scholar 

  • Wong, A. M. H., & Kang, D.-K. (2016). Stationary hand gesture authentication using edit distance on finger pointing direction interval. Scientific Programming, 2016, 7427980–1742798015.

    Article  Google Scholar 

  • Wu, J., Christianson, J., Konrad, J., & Ishwar, P. (2015). Leveraging shape and depth in user authentication from in-air hand gestures. In 2015 IEEE international conference on image processing (ICIP) (pp. 3195–3199).

  • Wu, J., Ishwar, P., & Konrad, J. (2016). Two-stream cnns for gesture-based verification and identification: Learning user style. In 2016 IEEE conference on computer vision and pattern recognition workshops (CVPRW) (pp. 110–118).

  • Xiao, D., Li, J., Li, J., Dong, S., & Lu, T. (2022). Ihem loss: Intra-class hard example mining loss for robust face recognition. IEEE Transactions on Circuits and Systems for Video Technology, 32, 7821–7831.

  • Yu, X., Zhou, Z., Xu, M., You, X., & Li, X. (2020). Thumbup: Identification and authentication by smartwatch using simple hand gestures. In 2020 IEEE international conference on pervasive computing and communications (PerCom) (pp. 1–10).

  • Zhang, C., Zou, Y., Chen, G., & Gan, L. (2019). Pan: Persistent appearance network with an efficient motion cue for fast action recognition. In Proceedings of the 27th ACM international conference on multimedia.

  • Zhang, D., Guo, Z., Lu, G., Zhang, L., & Zuo, W. (2010). An online system of multispectral palmprint verification. IEEE Transactions on Instrumentation and Measurement, 59, 480–490.

    Article  Google Scholar 

  • Zhang, L., Li, L., Yang, A. J., Shen, Y., & Yang, M. (2017). Towards contactless palmprint recognition: A novel device, a new benchmark, and a collaborative representation based identification approach. Pattern Recognition, 69, 199–212.

    Article  Google Scholar 

  • Zhang, W., Chen, Y., Yang, W., Wang, G., Xue, J.-H., & Liao, Q. (2020). Class-variant margin normalized softmax loss for deep face recognition. IEEE Transactions on Neural Networks and Learning Systems, 32, 4742–4747.

    Article  Google Scholar 

  • Zhang, X., Zhao, R., Qiao, Y., Wang, X., & Li, H. (2019). Adacos: Adaptively scaling cosine logits for effectively learning deep face representations. In 2019 IEEE/CVF conference on computer vision and pattern recognition (CVPR) (pp. 10815–10824).

  • Zhang, Y., Herdade, S., Thadani, K., Dodds, E., Culpepper, J., & Ku, Y.-N. (2023). Unifying margin-based softmax losses in face recognition. In 2023 IEEE/CVF winter conference on applications of computer vision (WACV) (pp. 3537–3546).

  • Zhao, H., Shi, Y., Tong, X., Ying, X., & Zha, H. (2020). Qamface: Quadratic additive angular margin loss for face recognition. In 2020 IEEE international conference on image processing (ICIP) (pp. 1901–1905).

  • Zhao, K., Xu, J., & Cheng, M.-M. (2019). Regularface: Deep face recognition via exclusive regularization. In 2019 IEEE/CVF conference on computer vision and pattern recognition (CVPR) (pp. 1136–1144).

  • Zhong, Y., Deng, W., Hu, J., Zhao, D., Li, X., & Wen, D. (2021). Sface: Sigmoid-constrained hypersphere loss for robust face recognition. IEEE Transactions on Image Processing, 30, 2587–2598.

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Natural Science Foundation of China under Grant Nos. 62376100 and 61976095, the Natural Science Foundation of Guangdong Province of China under Grant No. 2022A1515010114, and China Scholarship Council under Grant No. 202206150104.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenxiong Kang or Adams Wai-Kin Kong.

Additional information

Communicated by Segio Escalera.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Proofs

Proofs

1.1 Proof of Gradient Magnitudes

The gradients of \({\mathscr {L}}\) with respect to \({\varvec{W}}\) and \({\varvec{x}}\) in Eq. 2 are

$$\begin{aligned}{} & {} \begin{array}{l} \frac{\partial {\mathscr {L}}}{\partial {\varvec{W}}_{l}}= \frac{\partial {\mathscr {L}}}{\partial y_{l}}\frac{\partial y_{l}}{\partial {\varvec{W}}_{l}} = \frac{\partial {\mathscr {L}}}{\partial y_{l}} \frac{\partial y_{l}}{\partial f(\theta _{l})} \frac{\partial f(\theta _{l})}{\partial cos\theta _{l}} \frac{\partial cos\theta _{l}}{\partial {\varvec{W}}_{l}}, \end{array} \end{aligned}$$
(A1)
$$\begin{aligned}{} & {} \begin{array}{l} \frac{\partial {\mathscr {L}}}{\partial {\varvec{W}}_o}= \frac{\partial {\mathscr {L}}}{\partial y_{l}} \frac{\partial y_{l}}{\partial {\varvec{W}}_o} = \frac{\partial {\mathscr {L}}}{\partial y_{l}} \frac{\partial y_{l}}{\partial cos\theta _o} \frac{\partial cos\theta _o}{\partial {\varvec{W}}_o},o \ne l, \end{array} \end{aligned}$$
(A2)
$$\begin{aligned}{} & {} \begin{array}{l} \frac{\partial {\mathscr {L}}}{\partial {\varvec{x}}} = \frac{\partial {\mathscr {L}}}{\partial y_{l}}\frac{\partial y_{l}}{\partial {\varvec{x}}} = \frac{\partial {\mathscr {L}}}{\partial y_{l}}( \frac{\partial y_{l}}{\partial f(\theta _{l})} \frac{\partial f(\theta _{l})}{\partial cos\theta _{l}} \frac{\partial cos\theta _{l}}{\partial {\varvec{x}}} \\ \qquad \qquad + \sum _{c\ne l}^{C} \frac{\partial y_{l}}{\partial cos\theta _c} \frac{\partial cos\theta _c}{\partial {\varvec{x}}} ), \end{array} \end{aligned}$$
(A3)

where

$$\begin{aligned}{} & {} \frac{\partial {\mathscr {L}}}{\partial y_{l}} =-\frac{1}{y_{l}}, \end{aligned}$$
(A4)
$$\begin{aligned}{} & {} \frac{\partial y_{l}}{\partial f(\theta _{l})}=sy_{l}(1-y_{l}), \end{aligned}$$
(A5)
$$\begin{aligned}{} & {} \frac{\partial y_{l}}{\partial cos\theta _o}= sy_{l}(0-y_o), y_{o}=\frac{e^{s\cos \theta _{o}}}{e^{sf(\theta _{l})}+\sum _{c \ne l}^{C}e^{s\cos \theta _{c}}}, \nonumber \\ \end{aligned}$$
(A6)
$$\begin{aligned}{} & {} \frac{\partial f(\theta _{l})}{\partial cos\theta _{l}}= \frac{\partial f(\theta _{l})}{\partial \theta _{l}} \frac{\partial \theta _{l}}{\partial cos\theta _{l}}=m_0m_1\frac{sin\left( m_1\theta _{l}+m_2\right) }{sin\theta _{l}}. \nonumber \\ \end{aligned}$$
(A7)

\(\partial cos\theta _j / \partial {\varvec{W}}_j\) and \(\partial cos\theta _j / \partial {\varvec{x}}\) \((j=1,2,\ldots ,C)\) contain a portion of the gradient magnitude and the main gradient direction, which can be further calculated as

$$\begin{aligned}{} & {} \frac{\partial {cos\theta _j}}{\partial {{\varvec{W}}_j}}=\frac{1}{\Vert {{\varvec{W}}_j} \Vert _2}\left( \hat{{\varvec{x}}}^{T}-{cos\theta _{j}}\hat{{\varvec{W}}}_j\right) , \end{aligned}$$
(A8)
$$\begin{aligned}{} & {} {\frac{\partial c o s\theta _{j}}{\partial {\varvec{x}}}}={\frac{1}{\Vert {\varvec{x}}\Vert _{2}}}\left( {\hat{{\varvec{W}}}}_{j}^{T}-c o s\theta _{j}{\hat{{\varvec{x}}}}\right) . \end{aligned}$$
(A9)

The gradient magnitudes of Eqs. A8 and A9 are

$$\begin{aligned}{} & {} \left\| \frac{\partial c o s\theta _{j}}{\partial {\varvec{W}}_{j}}\right\| _{2}=\frac{\left| s i n\theta _{j}\right| }{\Vert {\varvec{W}}_{j}\Vert _{2}}, \end{aligned}$$
(A10)
$$\begin{aligned}{} & {} \left\| \frac{\partial c o s\theta _{j}}{\partial {\varvec{x}}}\right\| _{2}=\frac{\left| s i n\theta _{j}\right| }{\Vert {\varvec{x}}\Vert _{2}}. \end{aligned}$$
(A11)

Hence, we can obtain the magnitudes of C gradients with respect to proxy \(\varvec{W_j}\) (\(j=1,2,\ldots ,C\)) and the magnitudes of C gradient components (associating with proxy \(\varvec{W_j}\)) with respect to \({\varvec{x}}\). These magnitudes can be divided into two types, associating with the corresponding proxy \({\varvec{W}}_{l}\) (\(cos\theta _{l}=\hat{{\varvec{W}}} _{l}\hat{{\varvec{x}}}\)) and non-corresponding proxies \({\varvec{W}}_{o}\) (\(cos\theta _{o}=\hat{{\varvec{W}}} _o\hat{{\varvec{x}}}\), \(o \ne l\)). The two type magnitudes of the gradients with respect to \({\varvec{W}}\) are

$$\begin{aligned} \left\| \nabla _{{\varvec{W}}}^{l}\right\| _2= & {} \left\| \frac{\partial {\mathscr {L}}}{\partial y_{l}} \frac{\partial y_{l}}{\partial f(\theta _{l})} \frac{\partial f(\theta _{l})}{\partial cos\theta _{l}} \frac{\partial cos\theta _{l}}{\partial {\varvec{W}}_{l}}\right\| _2\nonumber \\= & {} \frac{s}{\Vert {\varvec{W}}_{l}\Vert _2}\left| (y_{l}-1)m_0m_1sin\left( m_1\theta _{l}+m_2\right) \right| , \nonumber \\ \end{aligned}$$
(A12)
$$\begin{aligned} \left\| \nabla _{{\varvec{W}}}^o\right\| _2= & {} \left\| \frac{\partial {\mathscr {L}}}{\partial y_{l}} \frac{\partial y_{l}}{\partial cos\theta _o} \frac{\partial cos\theta _o}{\partial {\varvec{W}}_o} \right\| _2 \nonumber \\{} & {} = \frac{s}{\Vert {\varvec{W}}_o\Vert _2}\left| (y_o-0)sin\theta _o\right| . \end{aligned}$$
(A13)

The two type magnitudes of the gradient components with respect to \({\varvec{x}}\) are

$$\begin{aligned} \left\| \nabla _{{\varvec{x}}}^{l}\right\| _2= & {} \left\| \frac{\partial {\mathscr {L}}}{\partial y_{l}}\frac{\partial y_{l}}{\partial f(\theta _{l})} \frac{\partial f(\theta _{l})}{\partial cos\theta _{l}} \frac{\partial cos\theta _{l}}{\partial {\varvec{x}}} \right\| _2 \nonumber \\= & {} \frac{s}{\Vert {\varvec{x}}\Vert _2}\left| (y_{l}-1)m_0m_1sin\left( m_1\theta _{l}+m_2\right) \right| , \end{aligned}$$
(A14)
$$\begin{aligned} \left\| \nabla _{{\varvec{x}}}^o\right\| _2= & {} \left\| \frac{\partial {\mathscr {L}}}{\partial y_{l}}\frac{\partial y_{l}}{\partial cos\theta _o} \frac{\partial cos\theta _o}{\partial {\varvec{x}}} \right\| _2 = \frac{s}{\Vert {\varvec{x}}\Vert _2}\left| (y_o-0)sin\theta _o\right| . \nonumber \\ \end{aligned}$$
(A15)

1.2 Proof of Linear Similarity Measurement Function

If we take \(\frac{\partial f(\theta _j)}{\partial cos\theta _j}=\frac{1}{sin\theta _j} (j=1,2,\ldots ,C\)), we get

$$\begin{aligned} \left\| \nabla _{{\varvec{W}}}^{l}\right\| _2= & {} \left\| \frac{\partial {\mathscr {L}}}{\partial y_{l}} \frac{\partial y_{l}}{\partial f(\theta _{l})} \frac{\partial f(\theta _{l})}{\partial cos\theta _{l}} \frac{\partial cos\theta _{l}}{\partial {\varvec{W}}_{l}}\right\| _2\nonumber \\= & {} \left| -\frac{1}{y_{l}} sy_{l}(1-y_{l}) \frac{1}{sin\theta _{l}} \frac{s i n\theta _{l}}{\Vert {\varvec{W}}_{l}\Vert _{2}} \right| \nonumber \\= & {} \frac{s}{\Vert {\varvec{W}}_{l}\Vert _{2}}\left| y_{l}-1\right| \nonumber \\= & {} \frac{s}{\Vert {\varvec{W}}_{l}\Vert _{2}} B_{l}\cdot 1, \end{aligned}$$
(A16)
$$\begin{aligned} \left\| \nabla _{{\varvec{W}}}^{o}\right\| _2= & {} \left\| \frac{\partial {\mathscr {L}}}{\partial y_{l}} \frac{\partial y_{l}}{\partial f(\theta _o)} \frac{\partial f(\theta _o)}{\partial cos\theta _o} \frac{\partial cos\theta _o}{\partial {\varvec{W}}_o}\right\| _2\nonumber \\= & {} \left| -\frac{1}{y_{l}} sy_{l}(0-y_o) \frac{1}{sin\theta _o} \frac{s i n\theta _o}{\Vert {\varvec{W}}_o\Vert _{2}} \right| \nonumber \\= & {} \frac{s}{\Vert {\varvec{W}}_o\Vert _{2}}\left| y_o-0\right| \nonumber \\= & {} \frac{s}{\Vert {\varvec{W}}_o\Vert _{2}} B_o\cdot 1. \end{aligned}$$
(A17)

Note that \(cos \theta _o\) is a spacial case of \(f(\theta _o)\) (\(m_0=m_1=1\) and \(m_2=m_3=0\), see Eq. 2). Thus, the modulation gradient magnitudes of the proposed L3AM loss (Eq. 15) are equal to one (\(M_{l}\)=\(M_{o}=1\)).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, W., Kang, W., Kong, A.WK. et al. L3AM: Linear Adaptive Additive Angular Margin Loss for Video-Based Hand Gesture Authentication. Int J Comput Vis (2024). https://doi.org/10.1007/s11263-024-02068-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11263-024-02068-w

Keywords

Navigation