Skip to main content
Log in

On the Arbitrary-Oriented Object Detection: Classification Based Approaches Revisited

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

A Correction to this article was published on 06 May 2022

This article has been updated

Abstract

Arbitrary-oriented object detection has been a building block for rotation sensitive tasks. We first show that the boundary problem suffered in existing dominant regression-based rotation detectors, is caused by angular periodicity or corner ordering, according to the parameterization protocol. We also show that the root cause is that the ideal predictions can be out of the defined range. Accordingly, we transform the angular prediction task from a regression problem to a classification one. For the resulting circularly distributed angle classification problem, we first devise a Circular Smooth Label technique to handle the periodicity of angle and increase the error tolerance to adjacent angles. To reduce the excessive model parameters by Circular Smooth Label, we further design a Densely Coded Labels, which greatly reduces the length of the encoding. Finally, we further develop an object heading detection module, which can be useful when the exact heading orientation information is needed e.g. for ship and plane heading detection. We release our OHD-SJTU dataset and OHDet detector for heading detection. Extensive experimental results on three large-scale public datasets for aerial images i.e. DOTA, HRSC2016, OHD-SJTU, and face dataset FDDB, as well as scene text dataset ICDAR2015 and MLT, show the effectiveness of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Change history

Notes

  1. To obtain a more thorough analysis and comprehensive results, the conference versions (Yang and Yan 2020; Yang et al. 2021a) have been significantly extended and improved in this journal version, especially in the following aspects: (i) We explore the relationship between the angle discrete representation granularity denoted by \(\omega \) and the detection performance. It shows that discrete granularity \(\omega \) can be approximated as a CSL technique with a rectangular window function, which has a certain tolerance in the divided angle interval. The difference is that CSL smooths between adjacent angle intervals. See Table 7 in Sect. 4.2; (ii) We use a specific calculation example to explain why the code length has such a large impact on the amount of detection model parameters and calculations, see Sect. 3.5; (iii) As for the angle prediction of the regression branch, we use two forms as the baseline to be compared, include direct regression and indirect regression, see Sect. 3.8; (iv) We verify our approach on additional more challenging datasets, including FDDB, and DOTA-v1.5/v2.0, see Tables 10 and 11. Among them DOTA-v1.5/v2.0 contain more data and tiny object (less than 10 pixels) than DOTA-v1.0; (v) We propose an angle fine-tuning mechanism to eliminate the theoretical prediction errors caused by angle dispersion which has been a common issue in whatever CSL and DCL, see Sect. 3.6; (vi) As a common function for downstream applications, we develop a classification-based object heading detector in Sect. 3.7. To verify its usefulness, we annotate and release a new dataset for this purpose and perform detection evaluation for both rotation and heading with a considerable amount, and more stringent evaluation indicators are used, as detailed in Sect. 4.1. To our best knowledge, this is the first public benchmark for multiple-category heading detection, especially at a considerable scale. Finally, we also release the full version of the source code.

  2. https://yangxue0827.github.io/OHD-SJTU.html.

  3. https://github.com/yangxue0827/RotationDetection.

  4. https://github.com/SJTU-Thinklab-Det/OHDet_Tensorflow.

References

  • Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., & Isard, M., et al. (2016). Tensorflow: A system for large-scale machine learning. In 12th\(\{\)USENIX\(\}\)symposium on operating systems design and implementation (\(\{\)OSDI\(\}\) 16) (pp. 265–283).

  • An, Q., Pan, Z., Liu, L., & You, H. (2019). Drbox-v2: An improved detector with rotatable boxes for target detection in SAR images. IEEE Transactions on Geoscience and Remote Sensing, 57(11), 8333–8349.

    Article  Google Scholar 

  • Azimi, S. M., Bahmanyar, R., Henry, C., & Kurz, F. (2021). Eagle: Large-scale vehicle detection dataset in real-world scenarios using aerial imagery. In 2020 25th international conference on pattern recognition (pp. 6920–6927). IEEE.

  • Azimi, S. M., Vig, E., Bahmanyar, R., Körner, M., & Reinartz, P. (2018). Towards multi-class object detection in unconstrained remote sensing imagery. In Asian conference on computer vision (pp. 150–165). Springer.

  • Berg, T. L., Berg, A. C., Edwards, J., & Forsyth, D. A. (2005). Who’s in the picture. In Advances in neural information processing systems (pp. 137–144).

  • Chen, Y., Li, J., Xiao, H., Jin, X., Yan, S., & Feng, J. (2017). Dual path networks. In Advances in neural information processing systems (pp. 4467–4475).

  • Chen, Z., Chen, K., Lin, W., See, J., Yu, H., Ke, Y., & Yang, C. (2020). Piou loss: Towards accurate oriented object detection in complex environments. In European conference on computer vision (pp. 195–211). Springer.

  • Dai, J., Li, Y., He, K., & Sun, J. (2016). R-fcn: Object detection via region-based fully convolutional networks. In Advances in neural information processing systems (pp. 379–387).

  • Deng, D., Liu, H., Li, X., & Cai, D. (2018). Pixellink: Detecting scene text via instance segmentation. In Proceedings of the AAAI conference on artificial intelligence (Vol. 32).

  • Ding, J., Xue, N., Long, Y., Xia, G. S., & Lu, Q. (2019). Learning roi transformer for oriented object detection in aerial images. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2849–2858).

  • Duan, K., Bai, S., Xie, L., Qi, H., Huang, Q., & Tian, Q. (2019). Centernet: Keypoint triplets for object detection. In Proceedings of the IEEE international conference on computer vision (pp. 6569–6578).

  • Feng, P., Lin, Y., Guan, J., He, G., Shi, H., & Chambers, J. (2020). Toso: Student’sT distribution aided one-stage orientation target detection in remote sensing images. In ICASSP 2020-2020 IEEE international conference on acoustics, speech and signal processing (pp. 4057–4061). IEEE.

  • Feng, W., He, W., Yin, F., Zhang, X. Y., & Liu, C. L. (2019). Textdragon: An end-to-end framework for arbitrary shaped text spotting. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 9076–9085).

  • Frank, G. (1953). Pulse code communication. US Patent 2632058.

  • Fu, K., Chang, Z., Zhang, Y., Xu, G., Zhang, K., & Sun, X. (2020). Rotation-aware and multi-scale convolutional neural network for object detection in remote sensing images. ISPRS Journal of Photogrammetry and Remote Sensing, 161, 294–308.

    Article  Google Scholar 

  • Girshick, R. (2015). Fast r-cnn. In Proceedings of the IEEE international conference on computer vision (pp. 1440–1448).

  • Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2014). Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 580–587).

  • Gupta, A., Vedaldi, A., & Zisserman, A. (2016). Synthetic data for text localisation in natural images. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2315–2324).

  • He, K., Gkioxari, G., Dollár, P., & Girshick, R. (2017a). Mask r-cnn. In Proceedings of the IEEE international conference on computer vision (pp. 2961–2969).

  • He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770–778).

  • He, W., Zhang, X. Y., Yin, F., & Liu, C. L. (2017b). Deep direct regression for multi-oriented scene text detection. In Proceedings of the IEEE international conference on computer vision (pp. 745–753).

  • Heath, F. (1972). Origins of the binary code. Scientific American, 227(2), 76–83.

    Article  Google Scholar 

  • Hou, L., Lu, K., Xue, J., & Hao, L. (2020). Cascade detector with feature fusion for arbitrary-oriented objects in remote sensing images. In 2020 IEEE international conference on multimedia and expo (pp. 1–6). IEEE.

  • Huang, C., Ai, H., Li, Y., & Lao, S. (2007). High-performance rotation invariant multiview face detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(4), 671–686.

    Article  Google Scholar 

  • Jain, V., & Learned-Miller, E. (2010). Fddb: A benchmark for face detection in unconstrained settings.

  • Jiang, Y., Zhu, X., Wang, X., Yang, S., Li, W., Wang, H., Fu, P., & Luo, Z. (2017). R2cnn: Rotational region CNN for orientation robust scene text detection. arXiv preprint arXiv:1706.09579.

  • Karatzas, D., Gomez-Bigorda, L., Nicolaou, A., Ghosh, S., Bagdanov, A., Iwamura, M., Matas, J., Neumann, L., Chandrasekhar, V.R., & Lu, S., et al. (2015). Icdar 2015 competition on robust reading. In 2015 13th international conference on document analysis and recognition (pp. 1156–1160). IEEE.

  • Kim, K. R., Choi, W., Koh, Y. J., Jeong, S. G., & Kim, C. S. (2019). Instance-level future motion estimation in a single image based on ordinal regression. In Proceedings of the IEEE international conference on computer vision (pp. 273–282).

  • Law, H., & Deng, J. (2018). Cornernet: Detecting objects as paired keypoints. In Proceedings of the European conference on computer vision (pp. 734–750).

  • Li, C., Xu, C., Cui, Z., Wang, D., Zhang, T., & Yang, J. (2019). Feature-attentioned object detection in remote sensing imagery. In 2019 IEEE international conference on image processing (pp. 3886–3890). IEEE.

  • Liao, M., Shi, B., & Bai, X. (2018). Textboxes++: A single-shot oriented scene text detector. IEEE Transactions on Image Processing, 27(8), 3676–3690.

    Article  MathSciNet  Google Scholar 

  • Liao, M., Wan, Z., Yao, C., Chen, K., & Bai, X. (2020). Real-time scene text detection with differentiable binarization. In Proceedings of the AAAI conference on artificial intelligence (Vol. 34, pp. 11474–11481).

  • Liao, M., Zhu, Z., Shi, B., Xia, G. S., & Bai, X. (2018b). Rotation-sensitive regression for oriented scene text detection. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 5909–5918).

  • Li, C., Luo, B., Hong, H., Su, X., Wang, Y., Liu, J., et al. (2020). Object detection based on global-local saliency constraint in aerial images. Remote Sensing, 12(9), 1435.

    Article  Google Scholar 

  • Li, Y., Huang, Q., Pei, X., Jiao, L., & Shang, R. (2020). Radet: Refine feature pyramid network and multi-layer attention network for arbitrary-oriented object detection of remote sensing images. Remote Sensing, 12(3), 389.

    Article  Google Scholar 

  • Lin, T. Y., Dollár, P., Girshick, R., He, K., Hariharan, B., & Belongie, S. (2017a). Feature pyramid networks for object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2117–2125).

  • Lin, T. Y., Goyal, P., Girshick, R., He, K., & Dollár, P. (2017b). Focal loss for dense object detection. In Proceedings of the IEEE international conference on computer vision (pp. 2980–2988).

  • Lin, T. Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., & Zitnick, C. L. (2014). Microsoft coco: Common objects in context. In European conference on computer vision (pp. 740–755). Springer.

  • Lin, Y., Feng, P., & Guan, J. (2019). Ienet: Interacting embranchment one stage anchor free detector for orientation aerial object detection. arXiv preprint arXiv:1912.00969.

  • Liu, K., & Mattyus, G. (2015). Fast multiclass vehicle detection on aerial images. IEEE Geoscience and Remote Sensing Letters, 12(9), 1938–1942.

    Article  Google Scholar 

  • Liu, L., Pan, Z., & Lei, B. (2017a). Learning a rotation invariant detector with rotatable bounding box. arXiv preprint arXiv:1711.09405.

  • Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C. Y., & Berg, A. C. (2016). Ssd: Single shot multibox detector. In Proceedings of the European conference on computer vision (pp. 21–37). Springer.

  • Liu, X., Liang, D., Yan, S., Chen, D., Qiao, Y., & Yan, J. (2018). Fots: Fast oriented text spotting with a unified network. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 5676–5685).

  • Liu, Y., Zhang, S., Jin, L., Xie, L., Wu, Y., & Wang, Z. (2019). Omnidirectional scene text detection with sequential-free box discretization. In Proceedings of the 27th international joint conference on artificial intelligence.

  • Liu, Z., Yuan, L., Weng, L., & Yang, Y. (2017b). A high resolution optical satellite image dataset for ship recognition and some new baselines. In Proceedings of the international conference on pattern recognition applications and methods (Vol. 2, pp. 324–331).

  • Ma, J., Shao, W., Ye, H., Wang, L., Wang, H., Zheng, Y., & Xue, X. (2018). Arbitrary-oriented scene text detection via rotation proposals. IEEE Transactions on Multimedia, 20(11), 3111–3122.

    Article  Google Scholar 

  • Nayef, N., Yin, F., Bizid, I., Choi, H., Feng, Y., Karatzas, D., Luo, Z., Pal, U., Rigaud, C., & Chazalon, J., et al. (2017). Icdar2017 robust reading challenge on multi-lingual scene text detection and script identification-rrc-mlt. In 2017 14th IAPR international conference on document analysis and recognition (Vol. 1, pp. 1454–1459). IEEE.

  • Newell, A., Yang, K., & Deng, J. (2016). Stacked hourglass networks for human pose estimation. In Proceedings of the European conference on computer vision (pp. 483–499). Springer.

  • Pan, X., Ren, Y., Sheng, K., Dong, W., Yuan, H., Guo, X., Ma, C., & Xu, C. (2020). Dynamic refinement network for oriented and densely packed object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 11207–11216).

  • Qian, W., Yang, X., Peng, S., Yan, J., & Guo, Y. (2021). Learning modulated loss for rotated object detection. In Proceedings of the AAAI conference on artificial intelligence (Vol. 35, pp. 2458–2466).

  • Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: Unified, real-time object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 779–788).

  • Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster r-cnn: Towards real-time object detection with region proposal networks. In Advances in neural information processing systems (pp. 91–99).

  • Rowley, H. A., Baluja, S., & Kanade, T. (1998). Rotation invariant neural network-based face detection. In Proceedings. 1998 IEEE computer society conference on computer vision and pattern recognition (Cat. No. 98CB36231) (pp. 38–44). IEEE.

  • Shi, B., Bai, X., & Belongie, S. (2017). Detecting oriented text in natural images by linking segments. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2550–2558).

  • Shi, X., Shan, S., Kan, M., Wu, S., & Chen, X. (2018). Real-time rotation-invariant face detection with progressive calibration networks. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2295–2303).

  • Tian, Z., Huang, W., He, T., He, P., & Qiao, Y. (2016). Detecting text in natural image with connectionist text proposal network. In Proceedings of the European conference on computer vision (pp. 56–72). Springer.

  • Tian, Z., Shen, C., & Chen, H. (2020). Conditional convolutions for instance segmentation. In European conference on computer vision, pp. 282–298. Springer.

  • Tian, Z., Shu, M., Lyu, P., Li, R., Zhou, C., Shen, X., & Jia, J. (2019). Learning shape-aware embedding for scene text detection. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 4234–4243).

  • Wang, J., Ding, J., Guo, H., Cheng, W., Pan, T., & Yang, W. (2019). Mask obb: A semantic attention-based mask oriented bounding box representation for multi-category object detection in aerial images. Remote Sensing, 11(24), 2930.

    Article  Google Scholar 

  • Wang, J., Yang, W., Li, H. C., Zhang, H., & Xia, G. S. (2020). Learning center probability map for detecting objects in aerial images. IEEE Transactions on Geoscience and Remote Sensing, 59(5), 4307–4323.

    Article  Google Scholar 

  • Wang, W., Xie, E., Li, X., Liu, X., Liang, D., Zhibo, Y., Lu, T., & Shen, C. (2021). Pan++: Towards efficient and accurate end-to-end spotting of arbitrarily-shaped text. IEEE Transactions on Pattern Analysis and Machine Intelligence.

  • Wang, W., Xie, E., Song, X., Zang, Y., Wang, W., Lu, T., Yu, G., & Shen, C. (2019b). Efficient and accurate arbitrary-shaped text detection with pixel aggregation network. In Proceedings of the IEEE international conference on computer vision (pp. 8440–8449).

  • Wang, X., Kong, T., Shen, C., Jiang, Y., & Li, L. (2020b). Solo: Segmenting objects by locations. In Proceedings of the European conference on computer vision (pp. 649–665). Springer.

  • Wang, Y., Zhang, Y., Zhang, Y., Zhao, L., Sun, X., & Guo, Z. (2019). Sard: Towards scale-aware rotated object detection in aerial imagery. IEEE Access, 7, 173855–173865.

    Article  Google Scholar 

  • Wei, H., Zhang, Y., Chang, Z., Li, H., Wang, H., & Sun, X. (2020). Oriented objects as pairs of middle lines. ISPRS Journal of Photogrammetry and Remote Sensing, 169, 268–279.

    Article  Google Scholar 

  • Wold, S., Esbensen, K., & Geladi, P. (1987). Principal component analysis. Chemometrics and intelligent laboratory systems, 2(1–3), 37–52.

    Article  Google Scholar 

  • Xia, G. S., Bai, X., Ding, J., Zhu, Z., Belongie, S., Luo, J., Datcu, M., Pelillo, M., & Zhang, L. (2018). Dota: A large-scale dataset for object detection in aerial images. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 3974–3983).

  • Xiao, Z., Qian, L., Shao, W., Tan, X., & Wang, K. (2020). Axis learning for orientated objects detection in aerial images. Remote Sensing, 12(6), 908.

    Article  Google Scholar 

  • Xie, E., Wang, W., Mingyu, D., Ruimao, Z., & Luo, P. (2021). Polarmask++: Enhanced polar representation for single-shot instance segmentation and beyond. IEEE Transactions on Pattern Analysis and Machine Intelligence.

  • Xie, S., Girshick, R., Dollár, P., Tu, Z., & He, K. (2017). Aggregated residual transformations for deep neural networks. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1492–1500).

  • Xu, Y., Fu, M., Wang, Q., Wang, Y., Chen, K., Xia, G. S., & Bai, X. (2020). Gliding vertex on the horizontal bounding box for multi-oriented object detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43(4), 1452–1459.

    Article  Google Scholar 

  • Xu, Y., Wang, Y., Zhou, W., Wang, Y., Yang, Z., & Bai, X. (2019). Textfield: Learning a deep direction field for irregular scene text detection. IEEE Transactions on Image Processing, 28(11), 5566–5579.

    Article  MathSciNet  Google Scholar 

  • Yang, F., Li, W., Hu, H., Li, W., & Wang, P. (2020). Multi-scale feature integrated attention-based rotation network for object detection in vhr aerial images. Sensors, 20(6), 1686.

    Article  Google Scholar 

  • Yang, Q., Cheng, M., Zhou, W., Chen, Y., Qiu, M., & Lin, W. (2018a). Inceptext: A new inception-text module with deformable psroi pooling for multi-oriented scene text detection. In Proceedings of the 27th international joint conference on artificial intelligence (pp. 1071–1077).

  • Yang, X., Hou, L., Zhou, Y., Wang, W., & Yan, J. (2021a). Dense label encoding for boundary discontinuity free rotation detection. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 15819–15829).

  • Yang, X., Sun, H., Fu, K., Yang, J., Sun, X., Yan, M., & Guo, Z. (2018). Automatic ship detection in remote sensing images from google earth of complex scenes based on multiscale rotation dense feature pyramid networks. Remote Sensing, 10(1), 132.

    Article  Google Scholar 

  • Yang, X., Sun, H., Sun, X., Yan, M., Guo, Z., & Fu, K. (2018). Position detection and direction prediction for arbitrary-oriented ships via multitask rotation region convolutional neural network. IEEE Access, 6, 50839–50849.

    Article  Google Scholar 

  • Yang, X., & Yan, J. (2020). Arbitrary-oriented object detection with circular smooth label. In Proceedings of the European conference on computer vision (pp. 677–694). Springer.

  • Yang, X., Yan, J., Feng, Z., & He, T. (2021b). R3det: Refined single-stage detector with feature refinement for rotating object. In Proceedings of the AAAI conference on artificial intelligence (Vol. 35, pp. 3163–3171).

  • Yang, X., Yang, J., Yan, J., Zhang, Y., Zhang, T., Guo, Z., Sun, X., & Fu, K. (2019). Scrdet: Towards more robust detection for small, cluttered and rotated objects. In Proceedings of the IEEE international conference on computer vision (pp. 8232–8241).

  • Yang, X., Zhou, Y., & Yan, J. (2021c). Alpharotate: A rotation detection benchmark using tensorflow. arXiv preprint arXiv:2111.06677.

  • Yi, J., Wu, P., Liu, B., Huang, Q., Qu, H., & Metaxas, D. (2021). Oriented object detection in aerial images with box boundary-aware vectors. In Proceedings of the IEEE winter conference on applications of computer vision (pp. 2150–2159).

  • Yu, F., Wang, D., Shelhamer, E., & Darrell, T. (2018). Deep layer aggregation. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2403–2412).

  • Zhang, G., Lu, S., & Zhang, W. (2019). Cad-net: A context-aware detection network for objects in remote sensing imagery. IEEE Transactions on Geoscience and Remote Sensing, 57(12), 10015–10024.

    Article  Google Scholar 

  • Zhang, Z., Guo, W., Zhu, S., & Yu, W. (2018). Toward arbitrary-oriented ship detection with rotated region proposal and discrimination networks. IEEE Geoscience and Remote Sensing Letters, 15(11), 1745–1749.

    Article  Google Scholar 

  • Zhou, L., Wei, H., Li, H., Zhao, W., Zhang, Y., & Zhang, Y. (2020). Arbitrary-oriented object detection in remote sensing images based on polar coordinates. IEEE Access, 8, 223373–223384.

    Article  Google Scholar 

  • Zhou, X., Yao, C., Wen, H., Wang, Y., Zhou, S., He, W., & Liang, J. (2017). East: An efficient and accurate scene text detector. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 5551–5560).

  • Zhou, X., Zhuo, J., & Krahenbuhl, P. (2019). Bottom-up object detection by grouping extreme and center points. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 850–859).

  • Zhu, Y., Du, J., & Wu, X. (2020). Adaptive period embedding for representing oriented objects in aerial images. IEEE Transactions on Geoscience and Remote Sensing, 58(10), 7247–7257.

    Article  Google Scholar 

  • Zou, F., Xiao, W., Ji, W., He, K., Yang, Z., Song, J., Zhou, H., & Li, K. (2020). Arbitrary-oriented object detection via dense feature fusion and attention model for remote sensing super-resolution image. Neural Computing and Applications, pp. 1–14.

Download references

Acknowledgements

This work was partly supported by National Key Research and Development Program of China (2020AAA0107600), Shanghai Municipal Science and Technology Major Project (2021SHZDZX0102) and National Natural Science Foundation of China (U20B2068, 61972250). Xue Yang is partly supported by Wu Wen Jun Honorary Doctoral Scholarship, AI Institute, Shanghai Jiao Tong University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junchi Yan.

Additional information

Communicated by Matej Kristan.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Yan, J. On the Arbitrary-Oriented Object Detection: Classification Based Approaches Revisited. Int J Comput Vis 130, 1340–1365 (2022). https://doi.org/10.1007/s11263-022-01593-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11263-022-01593-w

Keywords

Navigation