Skip to main content
Log in

Image Guided Reconstruction of Un-sampled Data: A Filling Technique for Cultural Heritage Models

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

Cultural Heritage (CH) is one of the major fields of application of 3D scanning technologies. In this context, one of the main limitations perceived by the practitioners is the uncompleteness of the sampling. Whenever we scan a complex artifact, the produced sampling usually presents a large number of unsampled regions. Many algorithmic solutions exist to close those gaps (from specific hole-filling algorithms to the drastic solution of using water-tight reconstruction methods). Unfortunately, adding patches over un-sampled regions is an issue in CH applications: if the 3D model should be used as a master document over the shape (and status) of the artwork, informed CH curators usually do not accept that an algorithm is used to guess portions of a surface.

In this paper, we present a low-cost setup and related algorithms to reconstruct un-sampled portions of the 3D models by inferring information about the real shape of the missing region from photographs. Data needed to drive the surface completion process are obtained by coupling a calibrated pattern of laser diodes to a digital camera. Thus, we are proposing a simple active acquisition device (based on consumer components and more flexible than standard 3D scanning devices) to improve selectively the sampling produced by a standard 3D scanning device.

After acquiring one or more images with the laser-enhanced camera, an almost completely automatic process analyzes the image/s in order to extract the pattern, to estimate the laser projector intersections over the surface and determining coordinates of those points (using the consolidated triangulation approach). Then, the gathered geometric data are used to steer the hole filling in order to obtain a patch which is coherent with the real shape of the object. A series of tests on real objects proves that our method is able to recover geometrical features that cannot be reconstructed using state-of-the-art methods. Consequently, it can be used to obtain complete 3D models without creating plausible but false data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akbarzadeh, A., Frahm, J. M., Mordohai, P., Clipp, B., Engels, C., Gallup, D., Merrell, P., Phelps, M., Sinha, S., Talton, B., Wang, L., Yang, Q., Stewenius, H., Yang, R., Welch, G., Towles, H., Nister, D., & Pollefeys, M. (2006). Towards urban 3d reconstruction from video. In Third international symposium on 3d data processing, visualization, and transmission (pp. 1–8). doi:10.1109/3DPVT.2006.141.

  • Amenta, N., & Kil, Y. J. (2004). Defining point-set surfaces. ACM Transactions on Graphics, 23(3), 264–270.

    Article  Google Scholar 

  • Becker, J., Stewart, C., & Radke, R. (2009). Lidar inpainting from a single image. In International workshop on 3-D digital imaging and modeling (3DIM).

  • Bendels, G. H., Schnabel, R., & Klein, R. (2005). Detail-preserving surface inpainting. In M. Mudge, N. Ryan & R. Scopigno (Eds.), The 6th international symposium on virtual reality, archaeology and cultural heritage (pp. 41–48). Pisa: Eurographics Association.

    Google Scholar 

  • Bischoff, S., Pavic, D., & Kobbelt, L. (2005). Automatic restoration of polygon models. ACM Transactions on Graphics, 24(4), 1332–1352.

    Article  Google Scholar 

  • Carr, J. C., Beatson, R. K., Cherrie, J. B., Mitchell, T. J., Fright, W. R., McCallum, B. C., & Evans, T. R. (2001). Reconstruction and representation of 3d objects with radial basis functions. In SIGGRAPH (pp. 67–76).

  • Corsini, M., Dellepiane, M., Ponchio, F., & Scopigno, R. (2009). Image-to-geometry registration: a mutual information method exploiting illumination-related geometric properties. Computer Graphics Forum, 28(7), 1755–1764. http://vcg.isti.cnr.it/Publications/2009/CDPS09.

    Article  Google Scholar 

  • Davis, J., Marshner, S., Garr, M., & Levoy, M. (2002). Filling holes in complex surfaces using volumetric diffusion. In First int. symp. on 3D data processing, visualization and transmission (3DPVT’02) (pp. 428–438). Los Alamitos: IEEE Comput. Soc.

    Chapter  Google Scholar 

  • Franken, T., Dellepiane, M., Ganovelli, F., Cignoni, P., Montani, C., & Scopigno, R. (2005). Minimizing user intervention in registering 2D images to 3D models. The Visual Computer, 21(8–10), 619–628. http://vcg.isti.cnr.it/Publications/2005/CDFGMS05.

    Article  Google Scholar 

  • Furukawa, Y., & Ponce, J. (2010). Accurate, dense, and robust multiview stereopsis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(8), 1362–1376. doi:10.1109/TPAMI.2009.161.

    Article  Google Scholar 

  • Goesele, M., Snavely, N., Curless, B., Hoppe, H., & Seitz, S. (2007). Multi-view stereo for community photo collections (pp. 1–8).

  • Ju, T. (2004). Robust repair of polygonal models. ACM Transactions on Graphics, 23(3), 888–895. doi:10.1145/1015706.1015815.

    Article  Google Scholar 

  • Kazhdan, M., Bolitho, M., & Hoppe, H. (2006). Poisson surface reconstruction. In SGP ’06: Proceedings of the fourth Eurographics symposium on geometry processing (pp. 61–70). Eurographics Association, Aire-la-Ville, Switzerland.

  • Lensch, H. P. A., Heidrich, W., & Seidel, H. P. (2000). Automated texture registration and stitching for real world models. In PG ’00: Proceedings of the 8th pacific conference on computer graphics and applications (p. 317). Washington: IEEE Computer Society.

    Chapter  Google Scholar 

  • Liao, M., Zhang, Q., Wang, H., Yang, R., & Gong, M. (2009). Modeling deformable objects from a single depth camera. In ICCV: proceedings of the 12th IEEE international conference on computer vision. Kyoto, Japan.

  • Liepa, P. (2003). Filling holes in meshes. In SGP ’03: Proceedings of the 2003 Eurographics/ACM SIGGRAPH symposium on geometry processing (pp. 200–205). Eurographics Association, Aire-la-Ville, Switzerland.

  • Liu, L., Stamos, I., Yu, G., Wolberg, G., & Zokai, S. (2006). Multiview geometry for texture mapping 2d images onto 3d range data. Computer Vision and Pattern Recognition, 02, 2293–2300. doi:10.1109/CVPR.2006.204.

    Google Scholar 

  • Lorensen, W.E., & Cline, H.E. (1987). Marching cubes: A high resolution 3d surface construction algorithm. Computer Graphics, 21(4).

  • Lourakis, M. (July 2004). Levmar: Levenberg-Marquardt nonlinear least squares algorithms in C/C++. http://www.ics.forth.gr/lourakis/levmar/+.

  • Nooruddin, F., & Turk, G. (2003). Simplification and repair of polygonal models using volumetric techniques. IEEE Transactions on Visualization and Computer Graphics, 9(2), 191–205.

    Article  Google Scholar 

  • Park, S., Guo, X., Shin, H., & Qin, H. (2005). Shape and appearance repair for incomplete point surfaces. In Tenth IEEE international conference on computer vision, ICCV 2005 (Vol. 2, pp. 1260–1267). doi:10.1109/ICCV.2005.218.

  • Parus, M. V. J., & Kolingerová, I. (2005). Simple holes triangulation in surface reconstruction. In A. Handlovivèová (Ed.), Algoritmy 2005. Slovak University of Technology.

  • Przybilla, H. (2006). Fusion of terrestrial laserscanning and digital photogrammetry. In IEVM06.

  • Sharf, A., Alexa, M., & Cohen-Or, D. (2004). Context-based surface completion. ACM Transactions on Graphics, 23(3), 878–887. doi:10.1145/1015706.1015814.

    Article  Google Scholar 

  • Vergauwen, M., & Gool, L. V. (2006). Web-based 3d reconstruction service. Machine Vision and Applications, 17(6), 411–426.

    Article  Google Scholar 

  • Xu, S., Georghiades, A., Rushmeier, H., Dorsey, J., & McMillan, L. (2006). Image guided geometry inference. In 3DPVT ’06: Proceedings of the third international symposium on 3D data processing, visualization, and transmission (3DPVT’06) (pp. 310–317). Washington: IEEE Computer Society. doi:10.1109/3DPVT.2006.81.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Dellepiane.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dellepiane, M., Venturi, A. & Scopigno, R. Image Guided Reconstruction of Un-sampled Data: A Filling Technique for Cultural Heritage Models. Int J Comput Vis 94, 2–11 (2011). https://doi.org/10.1007/s11263-010-0382-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11263-010-0382-2

Keywords

Navigation