Skip to main content
Log in

Novel genomic targets for proper subtyping of bovine viral diarrhea virus 1 (BVDV-1) and BVDV-2

  • Original Paper
  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

Whole-genome phylogenetic analysis, the most suitable strategy for subtyping bovine viral diarrhea virus 1 (BVDV-1) and BVDV-2, is not feasible for many laboratories. Consequently, BVDV isolates/strains have been frequently subtyped based on analysis of single genomic regions, mainly the 5’ untranslated region (UTR). This approach, however, may lead to inaccurate and/or poorly statistically supported viral classification. Herein, we describe novel primer sets whose amplicons may be easily sequenced and used for BVDV subtyping. Initially, genomic regions previously described as the most suitable targets for BVDV subtyping were analyzed for design of high-coverage primers. The putative amplicons were analyzed in silico for their suitability to reproduce the phylogenetic classification of 118 BVDV-1 and 88 BVDV-2 complete/near-complete genomes (CNCGs) (GenBank). This analysis was also performed considering the region amplifiable by primers HCV90-368, 324-326 and BP189-389 (5’UTR), which have been used for BVDV diagnosis and/or classification. After confirming the agreement between the analyses of our primers’ amplicon versus the CNCGs, we optimized the RT-PCRs and evaluated their performance for amplification of BVDV isolates/strains (n = 35 for BVDV-1; n = 33 for BVDV-2). Among the potential targets for BVDV subtyping, we designed high-coverage primers for NS3-NS4A (BVDV-1) (526 bp amplicon) and NS5B (BVDV-2) (728 bp). The classification based on these regions fully reproduced the subtyping of all CNCGs. On the other hand, subtyping based on the putative amplicons from primers HCV90-368, 324-326 and BP189-389 showed disagreements in relation the CNCG analysis. The NS3-NS4A and NS5B primers also allowed the amplification of all BVDV isolates/strains tested. Finally, we suggest the use of these primers in future phylogenetic and epidemiological studies of BVDVs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig.2

Similar content being viewed by others

Data availability

Datasets generated and/or analyzed during the current study will be available on GenBank and may also be made available by the corresponding author upon reasonable request.

References

  1. Smith DB, Meyers G, Bukh J, Gould EA, Monath T, Muerhoff AS, Pletnev A, Rico-Hesse R, Stapleton JT, Simmonds P, Becher P (2017) Proposed revision to the taxonomy of the genus Pestivirus, family Flaviviridae. J Gen Virol 98:2106–2112. https://doi.org/10.1099/jgv.0.000873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. ICTV. Genus: Pestivirus - Flaviviridae - Positive-sense RNA Viruses - ICTV. https://talk.ictvonline.org/ictv-reports/ictv_online_report/positive-sense-rna-viruses/w/flaviviridae/361/genus-pestivirus. Accessed 12 Dec 2022.

  3. Houe H, Lindberg A, Moennig V (2006) Test strategies in bovine viral diarrhea virus control and eradication campaigns in Europe. J Vet Diagn Investig 18:427–436. https://doi.org/10.1177/104063870601800501

    Article  CAS  Google Scholar 

  4. Fernandes LG, Nogueira AHC, Stefano E, Pituco EM, Ribeiro CP, Alves CJ, Oliveira TS, Clementino IJ, Azevedo SS (2016) Herd-level and prevalence and risk factors for bovine viral diarrhea virus infection in cattle in the State of Paraíba. Northeastern Brazil, Trop Anim Health Prod 48:157–165. https://doi.org/10.1007/s11250-015-0937-x

    Article  PubMed  Google Scholar 

  5. Neill JD (2013) Molecular biology of bovine viral diarrhea virus. Biologicals 41:2–7. https://doi.org/10.1016/j.biologicals.2012.07.002

    Article  CAS  PubMed  Google Scholar 

  6. Gómez-Romero N, Ridpath JF, Basurto-Alcantara FJ, Verdugo-Rodriguez A (2021) Bovine viral diarrhea virus in cattle from Mexico: current status. Front Vet Sci 8:673577. https://doi.org/10.3389/fvets.2021.673577

    Article  PubMed  PubMed Central  Google Scholar 

  7. Deng M, Chen N, Guidarini C, Xu Z, Zhang J, Cai L, Yuan S, Sun Y, Metcalfe L (2020) Prevalence and genetic diversity of bovine viral diarrhea virus in dairy herds of China. Vet Microbiol 242:108565. https://doi.org/10.1016/j.vetmic.2019.108565

    Article  CAS  PubMed  Google Scholar 

  8. De Oliveira PSB, Silva Júnior JVJ, Weiblen R, Flores EF (2022) A new (old) bovine viral diarrhea virus 2 subtype: BVDV-2e. Arch Virol. https://doi.org/10.1007/s00705-022-05565-w

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ridpath JF, Bolin SR, Dubovi EJ (1994) Segregation of bovine viral diarrhea virus into genotypes. Virol 205:66–74. https://doi.org/10.1006/viro.1994.1620

    Article  CAS  Google Scholar 

  10. Becher P, König M, Paton DJ, Thiel HJ (1995) Further characterization of border disease virus isolates, evidence for the presence of more than three species within the genus pestivirus. Virol 209:200–206. https://doi.org/10.1006/viro.1995.1243

    Article  CAS  Google Scholar 

  11. Nagai M, Ito T, Sugita S, Genno A, Takeuchi K, Ozawa T, Sakoda Y, Nishimori T, Takamura K, Akashi H (2001) Genomic and serological diversity of bovine viral diarrhea virus in Japan. Arch Virol 146:685–696. https://doi.org/10.1007/s007050170139

    Article  CAS  PubMed  Google Scholar 

  12. Vilcek S, Paton DJ, Durkovic B, Strojny L, Ibata G, Moussa A, Loitsch A, Rossmanith W, Vega S, Scicluna MT, Paifi V (2001) Bovine viral diarrhoea virus genotype 1 can be separated into at least eleven genetic groups. ArchVirol 146:99–115. https://doi.org/10.1007/s007050170194

    Article  CAS  Google Scholar 

  13. Cortez A, Heinemann MC, Castro AMMG, Soares RM, Pinto AMV, Alfieri AA, Flores EF, Leite RC, Richtzenhain LJ (2006) Genetic characterization of Brazilian bovine viral diarrhea virus isolates by partial nucleotide sequencing of the 5’-UTR region. Pesq Vet Bras 26:211–216. https://doi.org/10.1590/S0100-736X2006000400005

    Article  Google Scholar 

  14. Ridpath JF, Fulton RW, Kirkland PD, Neill JD (2010) Prevalence and antigenic differences observed between bovine viral diarrhea virus subgenotypes isolated from cattle in Australia and feedlots in the southwestern United States. J Vet Diagn Investig 22:184–191. https://doi.org/10.1177/104063871002200203

    Article  Google Scholar 

  15. Becher P, Orlich M, Shannon AD, Horner G, König M, Thiel HJ (1997) Phylogenetic analysis of pestiviruses from domestic and wild ruminants. J Gen Virol 78:1357–2136. https://doi.org/10.1099/0022-1317-78-6-1357

    Article  CAS  PubMed  Google Scholar 

  16. Becher P, Orlich M, Kosmidou A, König M, Baroth M, Thiel HJ (1999) Genetic diversity of pestiviruses, identification of novel groups and implications for classification. Virol 262:64–71. https://doi.org/10.1006/viro.1999.9872

    Article  CAS  Google Scholar 

  17. Becher P, Ramirez RA, Orlich M, Rosales SC, König M, Schweizer M, Stalder H, Schirrmeier H, Thiel HJ (2003) Genetic and antigenic characterization of novel pestivirus genotypes, implications for classification. Virol 211:96–104. https://doi.org/10.1016/s0042-6822(03)00192-2

    Article  Google Scholar 

  18. Arias P, Orlich M, Prieto M, Rosales SC, Thiel H-J, Alvarez M, Becher P (2003) Genetic heterogeneity of bovine viral diarrhoea viruses from Spain. Vet Microbiol 96:327–336. https://doi.org/10.1016/j.vetmic.2003.09.009

    Article  CAS  PubMed  Google Scholar 

  19. Couvreur B, Letellier C, Collard A, Quenon P, Dehan P, Hamers C, Pastorest PP, Kerkhofs P (2002) Genetic and antigenic variability in bovine viral diarrhea virus BVDV isolates from Belgium. Virus Res 85:17–28. https://doi.org/10.1016/s0168-1702(02)00014-x

    Article  CAS  PubMed  Google Scholar 

  20. Tajima M, Dubovi EJ (2005) Genetic and clinical analyses of bovine viral diarrhea virus isolates from dairy operations in the United States of America. J Vet Diagn Investig 17:10–15. https://doi.org/10.1177/104063870501700104

    Article  Google Scholar 

  21. Abe Y, Tamura T, Torii S, Wakamori S, Nagai M, Mitsuhashi K, Mine J, Fujimoto Y, Nagashima N, Yoshino F, Sugita Y, Nomura T, Okamatsu M, Kida H, Sakoda Y (2017) Genetic and antigenic characterization of bovine viral diarrhea viruses isolated from cattle in Hokkaido, Japan. J Vet Med Sci 1:61–70. https://doi.org/10.1292/jvms.15-0186

    Article  CAS  Google Scholar 

  22. Nagai M, Hayashi M, Sugita S, Sakoda Y, Mori M, Murakami T, Ozawa T, Yamada N, Akashi H (2004) Phylogenetic analysis of bovine viral diarrhea viruses using five different genetic regions. Virus Res 99:103–113. https://doi.org/10.1016/j.virusres.2003.10.006

    Article  CAS  PubMed  Google Scholar 

  23. Xia H, Liu L, Wahlberg N, Baule C, Belák S (2007) Molecular phylogenetic analysis of bovine viral diarrhoea virus, a Bayesian approach. Virus Res 130:53–62. https://doi.org/10.1016/j.virusres.2007.05.017

    Article  CAS  PubMed  Google Scholar 

  24. Tajima M (2004) Bovine viral diarrhea virus 1 is classified into different subgenotypes depending on the analyzed region within the viral genome. Vet Microbiol 99:131–138. https://doi.org/10.1016/j.vetmic.2003.11.011

    Article  CAS  PubMed  Google Scholar 

  25. Workman AM, Heaton MP, Harhay GP, Smith TPL, Grotelueschen DM, Sjeklocha D, Brodersen B, Petersen JL, Chitko-McKown CG (2016) Resolving bovine viral diarrhea virus subtypes from persistently infected US beef calves with complete genome sequence. J Vet Diagn Investig 28:519–528. https://doi.org/10.1177/1040638716654943

    Article  CAS  Google Scholar 

  26. Yesilbag K, Alpay G, Becher P (2017) Variability and global distribution of subgenotypes of bovine viral diarrhea virus. Viruses 9:128. https://doi.org/10.3390/v9060128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. De Oliveira PSB, Silva Júnior JVJ, Weiblen R, Flores EF (2021) Subtyping bovine viral diarrhea virus (BVDV): Which viral gene to choose? Infect Genet Evol 92:104891. https://doi.org/10.1016/j.meegid.2021.104891

    Article  CAS  PubMed  Google Scholar 

  28. Flores EF, Cargnelutti JF, Monteiro FL, Bauermann FV, Ridpath JF, Weiblen R (2018) A genetic profile of bovine pestiviruses circulating in Brazil (1998–2018). Anim Health Res Rev 19:134–141. https://doi.org/10.1017/S1466252318000130

    Article  CAS  PubMed  Google Scholar 

  29. Weber MN, Wolf JM, Silva MS, Mosena ACS, Budaszewski RF, Lunge VR, Canal CW (2021) Insights into the origin and diversification of bovine viral diarrhea virus 1 subtype. Arch Virol 166:607–611. https://doi.org/10.1007/s00705-020-04913-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ridpath JF, Bolin SR (1998) Differentiation of types 1a, 1b and 2 bovine viral diarrhoea virus (BVDV) by PCR. Mol Cell Probes 12:101–106. https://doi.org/10.1006/mcpr.1998.0158

    Article  CAS  PubMed  Google Scholar 

  31. Vilcek S, Herring AJ, Nettleton PF, Lowings JP, Paton DJ (1994) Pestiviruses isolated from pigs, cattle and sheep can be allocated into at least three genogroups using polymerase chain reaction and restriction endonuclease analysis. Arch Virol 136:309–323. https://doi.org/10.1007/BF01321060

    Article  CAS  PubMed  Google Scholar 

  32. Monteiro FL, Cargnelutti JF, Martins B, Noll JG, Weiblen R, Flores EF (2019) Detection of bovine pestiviruses in sera of beef calves by a RT-PCR based on a newly designed st of pan-bovine pestivirus primers. J Vet Diagn Invest 31:255–258. https://doi.org/10.1177/1040638719826299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549. https://doi.org/10.1093/molbev/msy096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Pecora A, Malacari DA, Ridpath JF, Perez Aguirreburualde MS, Combessies G, Odeón AC, Romera SA, Golemba MD, Wigdorovitz A (2014) First finding of genetic and antigenic diversity in 1b-BVDV isolates from Argentina. Res Vet Sci 96:204–212. https://doi.org/10.1016/j.rvsc.2013.11.004

    Article  CAS  PubMed  Google Scholar 

  35. Staden R (1996) The Staden sequence analysis package. Mol Biotechnol 5:233–241. https://doi.org/10.1007/BF02900361

    Article  CAS  PubMed  Google Scholar 

  36. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nuclei Adds Symp Ser 41:95–98. https://doi.org/10.14601/phytopathol_mediterr-14998u1.29

    Article  CAS  Google Scholar 

  37. Irianingsih SH, Poermadjaja B, Wuryastuti H, Wasito R (2020) Genetic recombination of bovine viral diarrhea virus subgenotype -1a and -1c in persistently infected dairy cattle. Indones J Biotechnol 25:120–126. https://doi.org/10.22146/ijbiotech.54111

    Article  Google Scholar 

  38. Mishra N, Dubey R, Rajukumar K, Tosh C, Tiwari A, Pitale AA, Pradhan HK (2007) Genetic and antigenic characterization of bovine viral diarrhea virus type 2 isolated from Indian goats (Capra hircus). Vet Microbiol 124:340–347. https://doi.org/10.1016/j.vetmic.2007.04.023

    Article  CAS  PubMed  Google Scholar 

  39. Mishra N, Rajukumar K, Vileck A, Tiwari A, Satav JS, Dubey SC (2008) Molecular characterization of bovine viral diarrhea virus type 2 isolate originating from a naive Indian sheep (Ovies aries). Vet Microbiol 130:88–98. https://doi.org/10.1016/j.vetmic.2008.01.005

    Article  CAS  PubMed  Google Scholar 

  40. Spetter MJ, Uriarte ELL, Altamiranda EAG, Leunda MR, Pereyra SB, Verna AE, Odeón AC (2018) Dual natural infection with bovine viral diarrhea virus -1 and -2 in a stillborn calf: tissue distribution and molecular characterization. Open Vet J 8:493–497. https://doi.org/10.4314/ovj.v8i4.23

    Article  PubMed  PubMed Central  Google Scholar 

  41. Neill JD, Workman AM, Hesse R, Bai J, Porter EP, Meadors B, Anderson J, Bayles DO, Falkenberg SM (2019) Identification of BVDV2 and 2c subgenotypes in the United States: genetic and antigenic characterization. Virol 528:19–29. https://doi.org/10.1016/j.virol.2018.12.002

    Article  CAS  Google Scholar 

Download references

Acknowledgements

CIM and PSBO thank the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) (Brazil) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), respectively, for the scholarship. JVJSJr was supported by Financiadora de Estudos e Projetos (FINEP) DTI-A-1. EFF (process 301414/2010-6) and RW (process 305867/2018-0) were supported by CNPq research fellowships. The research was also supported partially by Coordenação de Aperfeiçocamento de Pessoal de Nível Superior (CAPES) (Brazil), finance code 001.

Funding

This study was partially funded by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) (Brazil), finance code 001.

Author information

Authors and Affiliations

Authors

Contributions

CIM, JVJSJr, PSBO, EFF and RW conceived the study design; CIM, JVJSJr and PSBO designed the primer sets; CIM and JVJSJr performed data collection; CIM, JVJSJr and PSBO analyzed the data; CIM and JVJSJr prepared the draft manuscript; EFF and RW critically reviewed the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Eduardo Furtado Flores.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests. All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Additional information

Edited by Nicola Decaro.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 146 KB)

Supplementary file2 (TIF 3260 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mucellini, C.I., Silva Júnior, J.V.J., de Oliveira, P.S.B. et al. Novel genomic targets for proper subtyping of bovine viral diarrhea virus 1 (BVDV-1) and BVDV-2. Virus Genes 59, 836–844 (2023). https://doi.org/10.1007/s11262-023-02022-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11262-023-02022-x

Keyword

Navigation