Skip to main content

Advertisement

Log in

A novel phage from periodontal pockets associated with chronic periodontitis

  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

Bacteriophages often constitute the majority of periodontal viral communities, but phages that infect oral bacteria remain uncharacterized. Here, we present the genetic analysis of the genome of a novel siphovirus, named Siphoviridae_29632, which was isolated from a patient with periodontitis using a viral metagenomics-based approach. Among 43 predicted open reading frames (ORFs) in the genome, the viral genes encoding structural proteins were distinct from the counterparts of other viruses, although a distant homology is shared among viral morphogenesis proteins. A total of 28 predicted coding sequences had significant homology to other known phage ORF sequences. In addition, the prevalence of Siphoviridae_29632 in a cohort of patients with chronic periodontitis was 41.67%, which was significantly higher than that in the healthy group (4.55%, P < 0.001), suggesting that this virus as well as its hosts may contribute to the ecological environment favored for chronic periodontitis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article

References

  1. Solbiati J, Frias-Lopez J (2018) Metatranscriptome of the oral microbiome in health and disease. J Dent Res 97(5):492–500. https://doi.org/10.1177/0022034518761644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Eke PI, Dye BA, Wei L, Thornton-Evans GO, Genco RJ (2012) Prevalence of periodontitis in adults in the United States: 2009 and 2010. J Dent Res 91(10):914–920. https://doi.org/10.1177/0022034512457373

    Article  CAS  PubMed  Google Scholar 

  3. Al-Rasheed A, Scheerens H, Rennick DM, Fletcher HM, Tatakis DN (2003) Accelerated alveolar bone loss in mice lacking interleukin-10. J Dent Res 82(8):632–635. https://doi.org/10.1177/154405910308200812

    Article  CAS  PubMed  Google Scholar 

  4. Assuma R, Oates T, Cochran D, Amar S, Graves DT (1998) IL-1 and TNF antagonists inhibit the inflammatory response and bone loss in experimental periodontitis. J Immunol 160(1):403–409

    CAS  PubMed  Google Scholar 

  5. Ly M, Abeles SR, Boehm TK, Robles-Sikisaka R, Naidu M, Santiago-Rodriguez T, Pride DT (2014) Altered oral viral ecology in association with periodontal disease. mBio 5(3):01133. https://doi.org/10.1128/mbio.01133-14

    Article  Google Scholar 

  6. Pride DT, Salzman J, Haynes M, Rohwer F, Davis-Long C, White RA 3rd, Loomer P, Armitage GC, Relman DA (2012) Evidence of a robust resident bacteriophage population revealed through analysis of the human salivary virome. ISME J 6(5):915–926. https://doi.org/10.1038/ismej.2011.169

    Article  CAS  PubMed  Google Scholar 

  7. Willner D, Furlan M, Schmieder R, Grasis JA, Pride DT, Relman DA, Angly FE, McDole T, Mariella RP Jr, Rohwer F, Haynes M (2011) Metagenomic detection of phage-encoded platelet-binding factors in the human oral cavity. Proc Natl Acad Sci USA 108(Suppl 1):4547–4553. https://doi.org/10.1073/pnas.1000089107

    Article  PubMed  Google Scholar 

  8. Robles-Sikisaka R, Ly M, Boehm T, Naidu M, Salzman J, Pride DT (2013) Association between living environment and human oral viral ecology. ISME J 7(9):1710–1724. https://doi.org/10.1038/ismej.2013.63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Minot S, Bryson A, Chehoud C, Wu GD, Lewis JD, Bushman FD (2013) Rapid evolution of the human gut virome. Proc Natl Acad Sci USA 110(30):12450–12455. https://doi.org/10.1073/pnas.1300833110

    Article  PubMed  Google Scholar 

  10. Breitbart M, Hewson I, Felts B, Mahaffy JM, Nulton J, Salamon P, Rohwer F (2003) Metagenomic analyses of an uncultured viral community from human feces. J Bacteriol 185(20):6220–6223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sullivan MB, Waterbury JB, Chisholm SW (2003) Cyanophages infecting the oceanic cyanobacterium Prochlorococcus. Nature 424(6952):1047–1051. https://doi.org/10.1038/nature01929

    Article  CAS  PubMed  Google Scholar 

  12. Wichels A, Biel SS, Gelderblom HR, Brinkhoff T, Muyzer G, Schutt C (1998) Bacteriophage diversity in the North Sea. Appl Environ Microbiol 64(11):4128–4133

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Pinto G, Silva MD, Peddey M, Sillankorva S, Azeredo J (2016) The role of bacteriophages in periodontal health and disease. Future Microbiol 11:1359–1369. https://doi.org/10.2217/fmb-2016-0081

    Article  CAS  PubMed  Google Scholar 

  14. Al-Jarbou AN (2012) Genomic library screening for viruses from the human dental plaque revealed pathogen-specific lytic phage sequences. Curr Microbiol 64(1):1–6. https://doi.org/10.1007/s00284-011-0025-z

    Article  CAS  PubMed  Google Scholar 

  15. Duerkop BA, Clements CV, Rollins D, Rodrigues JL, Hooper LV (2012) A composite bacteriophage alters colonization by an intestinal commensal bacterium. Proc Natl Acad Sci USA 109(43):17621–17626. https://doi.org/10.1073/pnas.1206136109

    Article  PubMed  Google Scholar 

  16. Allen HK, Looft T, Bayles DO, Humphrey S, Levine UY, Alt D, Stanton TB (2011) Antibiotics in feed induce prophages in swine fecal microbiomes. mBio 2(6):e00260. https://doi.org/10.1128/mbio.00260-11

    Article  PubMed  PubMed Central  Google Scholar 

  17. Parada V, Baudoux AC, Sintes E, Weinbauer MG, Herndl GJ (2008) Dynamics and diversity of newly produced virioplankton in the North Sea. ISME J 2(9):924–936. https://doi.org/10.1038/ismej.2008.57

    Article  CAS  PubMed  Google Scholar 

  18. Rodriguez-Brito B, Li L, Wegley L, Furlan M, Angly F, Breitbart M, Buchanan J, Desnues C, Dinsdale E, Edwards R, Felts B, Haynes M, Liu H, Lipson D, Mahaffy J, Martin-Cuadrado AB, Mira A, Nulton J, Pasic L, Rayhawk S, Rodriguez-Mueller J, Rodriguez-Valera F, Salamon P, Srinagesh S, Thingstad TF, Tran T, Thurber RV, Willner D, Youle M, Rohwer F (2010) Viral and microbial community dynamics in four aquatic environments. ISME J 4(6):739–751. https://doi.org/10.1038/ismej.2010.1

    Article  PubMed  Google Scholar 

  19. Rodriguez-Valera F, Martin-Cuadrado AB, Rodriguez-Brito B, Pasic L, Thingstad TF, Rohwer F, Mira A (2009) Explaining microbial population genomics through phage predation. Nat Rev Microbiol 7(11):828–836. https://doi.org/10.1038/nrmicro2235

    Article  CAS  PubMed  Google Scholar 

  20. Sandaa RA, Gomez-Consarnau L, Pinhassi J, Riemann L, Malits A, Weinbauer MG, Gasol JM, Thingstad TF (2009) Viral control of bacterial biodiversity–evidence from a nutrient-enriched marine mesocosm experiment. Environ Microbiol 11(10):2585–2597. https://doi.org/10.1111/j.1462-2920.2009.01983.x

    Article  CAS  PubMed  Google Scholar 

  21. Paisano AF, Spira B, Cai S, Bombana AC (2004) In vitro antimicrobial effect of bacteriophages on human dentin infected with Enterococcus faecalis ATCC 29212. Oral Microbiol Immunol 19(5):327–330. https://doi.org/10.1111/j.1399-302x.2004.00166.x

    Article  CAS  PubMed  Google Scholar 

  22. Aljarbou AN, Aljofan M (2014) Genotyping, morphology and molecular characteristics of a lytic phage of Neisseria strain obtained from infected human dental plaque. J Microbiol 52(7):609–618. https://doi.org/10.1007/s12275-014-3380-1

    Article  CAS  PubMed  Google Scholar 

  23. Bachrach G, Leizerovici-Zigmond M, Zlotkin A, Naor R, Steinberg D (2003) Bacteriophage isolation from human saliva. Lett Appl Microbiol 36(1):50–53

    Article  PubMed  Google Scholar 

  24. Delisle AL, Nauman RK, Minah GE (1978) Isolation of a bacteriophage for actinomyces viscosus. Infect Immunity 20(1):303–306

    CAS  Google Scholar 

  25. Farrar MD, Howson KM, Bojar RA, West D, Towler JC, Parry J, Pelton K, Holland KT (2007) Genome sequence and analysis of a Propionibacterium acnes bacteriophage. J Bacteriol 189(11):4161–4167. https://doi.org/10.1128/JB.00106-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Haubek D, Willi K, Poulsen K, Meyer J, Kilian M (1997) Presence of bacteriophage Aa phi 23 correlates with the population genetic structure of Actinobacillus actinomycetemcomitans. Eur J Oral Sci 105(1):2–8

    Article  CAS  PubMed  Google Scholar 

  27. Zhan Y, Huang S, Voget S, Simon M, Chen F (2016) A novel roseobacter phage possesses features of podoviruses, siphoviruses, prophages and gene transfer agents. Sci Rep 6:30372. https://doi.org/10.1038/srep30372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Edlund A, Santiago-Rodriguez TM, Boehm TK, Pride DT (2015) Bacteriophage and their potential roles in the human oral cavity. J Oral Microbiol 7:27423. https://doi.org/10.3402/jom.v7.27423

    Article  CAS  PubMed  Google Scholar 

  29. Hitch G, Pratten J, Taylor PW (2004) Isolation of bacteriophages from the oral cavity. Lett Appl Microbiol 39(2):215–219. https://doi.org/10.1111/j.1472-765X.2004.01565.x

    Article  CAS  PubMed  Google Scholar 

  30. Allander T, Emerson SU, Engle RE, Purcell RH, Bukh J (2001) A virus discovery method incorporating DNase treatment and its application to the identification of two bovine parvovirus species. Proc Natl Acad Sci USA 98(20):11609–11614. https://doi.org/10.1073/pnas.211424698

    Article  CAS  PubMed  Google Scholar 

  31. Zhang Y, Li F, Shan TL, Deng X, Delwart E, Feng XP (2016) A novel species of torque teno mini virus (TTMV) in gingival tissue from chronic periodontitis patients. Sci Rep 6:26739. https://doi.org/10.1038/srep26739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhang Y, Li F, Chen X, Shan TL, Deng XT, Delwart E, Feng XP (2017) Detection of a new species of torque teno mini virus from the gingival epithelium of patients with periodontitis. Virus Genes 53(6):823–830. https://doi.org/10.1007/s11262-017-1505-4

    Article  CAS  PubMed  Google Scholar 

  33. Zhang W, Yang S, Shan T, Hou R, Liu Z, Li W, Guo L, Wang Y, Chen P, Wang X, Feng F, Wang H, Chen C, Shen Q, Zhou C, Hua X, Cui L, Deng X, Zhang Z, Qi D, Delwart E (2017) Virome comparisons in wild-diseased and healthy captive giant pandas. Microbiome 5(1):90. https://doi.org/10.1186/s40168-017-0308-0

    Article  PubMed  PubMed Central  Google Scholar 

  34. Phan TG, Kapusinszky B, Wang C, Rose RK, Lipton HL, Delwart EL (2011) The fecal viral flora of wild rodents. PLoS Pathog 7(9):e1002218. https://doi.org/10.1371/journal.ppat.1002218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425. https://doi.org/10.1093/oxfordjournals.molbev.a040454

    Article  CAS  PubMed  Google Scholar 

  36. Brum JR, Ignacio-Espinoza JC, Roux S, Doulcier G, Acinas SG, Alberti A, Chaffron S, Cruaud C, de Vargas C, Gasol JM, Gorsky G, Gregory AC, Guidi L, Hingamp P, Iudicone D, Not F, Ogata H, Pesant S, Poulos BT, Schwenck SM, Speich S, Dimier C, Kandels-Lewis S, Picheral M, Searson S, Tara Oceans C, Bork P, Bowler C, Sunagawa S, Wincker P, Karsenti E, Sullivan MB (2015) Ocean plankton Patterns and ecological drivers of ocean viral communities. Science 348(6237):1261498. https://doi.org/10.1126/science.1261498

    Article  CAS  PubMed  Google Scholar 

  37. Vage S, Storesund JE, Thingstad TF (2013) SAR11 viruses and defensive host strains. Nature 499(7459):E3–4. https://doi.org/10.1038/nature12387

    Article  CAS  PubMed  Google Scholar 

  38. Katsura I (1987) Determination of bacteriophage lambda tail length by a protein ruler. Nature 327(6117):73–75. https://doi.org/10.1038/327073a0

    Article  CAS  PubMed  Google Scholar 

  39. Pedersen M, Ostergaard S, Bresciani J, Vogensen FK (2000) Mutational analysis of two structural genes of the temperate lactococcal bacteriophage TP901-1 involved in tail length determination and baseplate assembly. Virology 276(2):315–328. https://doi.org/10.1006/viro.2000.0497

    Article  CAS  PubMed  Google Scholar 

  40. Stevens RH, Preus HR, Dokko B, Russell DT, Furgang D, Schreiner HC, Goncharoff P, Figurski DH, Fine DH (1994) Prevalence and distribution of bacteriophage phi Aa DNA in strains of Actinobacillus actinomycetemcomitans. FEMS Microbiol Lett 119(3):329–337

    CAS  PubMed  Google Scholar 

  41. Tylenda CA, Calvert C, Kolenbrander PE, Tylenda A (1985) Isolation of Actinomyces bacteriophage from human dental plaque. Infect immunity 49(1):1–6

    CAS  Google Scholar 

  42. Olsen I, Namork E, Myhrvold V (1993) Electron microscopy of phages in serotypes of Actinobacillus actinomycetemcomitans. Oral Microbiol Immunol 8(6):383–385

    Article  CAS  PubMed  Google Scholar 

  43. Preus HR, Olsen I, Gjermo P (1987) Bacteriophage infection—a possible mechanism for increased virulence of bacteria associated with rapidly destructive periodontitis. Acta Odontol Scand 45(1):49–54

    Article  CAS  PubMed  Google Scholar 

  44. Willi K, Sandmeier H, Asikainen S, Saarela M, Meyer J (1997) Occurrence of temperate bacteriophages in different Actinobacillus actinomycetemcomitans serotypes isolated from periodontally healthy individuals. Oral Microbiol Immunol 12(1):40–46

    Article  CAS  PubMed  Google Scholar 

  45. Abeles SR, Robles-Sikisaka R, Ly M, Lum AG, Salzman J, Boehm TK, Pride DT (2014) Human oral viruses are personal, persistent and gender-consistent. ISME J 8(9):1753–1767. https://doi.org/10.1038/ismej.2014.31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Poullain V, Gandon S, Brockhurst MA, Buckling A, Hochberg ME (2008) The evolution of specificity in evolving and coevolving antagonistic interactions between a bacteria and its phage. Evol Int J Org Evol 62(1):1–11. https://doi.org/10.1111/j.1558-5646.2007.00260.x

    Article  Google Scholar 

  47. Lee S, Ward TJ, Siletzky RM, Kathariou S (2012) Two novel type II restriction-modification systems occupying genomically equivalent locations on the chromosomes of Listeria monocytogenes strains. Appl Environ Microbiol 78(8):2623–2630. https://doi.org/10.1128/AEM.07203-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Pride DT, Meinersmann RJ, Wassenaar TM, Blaser MJ (2003) Evolutionary implications of microbial genome tetranucleotide frequency biases. Genome Res 13(2):145–158. https://doi.org/10.1101/gr.335003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Shibata Y, Yamashita Y, van der Ploeg JR (2009) The serotype-specific glucose side chain of rhamnose-glucose polysaccharides is essential for adsorption of bacteriophage M102 to Streptococcus mutans. FEMS Microbiol Lett 294(1):68–73. https://doi.org/10.1111/j.1574-6968.2009.01546.x

    Article  CAS  PubMed  Google Scholar 

  50. Szafranski SP, Winkel A, Stiesch M (2017) The use of bacteriophages to biocontrol oral biofilms. J Biotechnol 250:29–44. https://doi.org/10.1016/j.jbiotec.2017.01.002

    Article  CAS  PubMed  Google Scholar 

  51. Machuca P, Daille L, Vines E, Berrocal L, Bittner M (2010) Isolation of a novel bacteriophage specific for the periodontal pathogen Fusobacterium nucleatum. Appl Environ Microbiol 76(21):7243–7250. https://doi.org/10.1128/AEM.01135-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors are grateful to all participates in the research and appreciate the efforts of teams in the Department of Swine Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.

Funding

The study was funded by the National Natural Science Foundation of China (Nos. 81800967 and 81470737).

Author information

Authors and Affiliations

Authors

Contributions

XPF and TLS designed the study. XTD and ED completed the data analysis and statistics. YZ and FL completed the sample collection and the amplifications of the newly discovered full-length human anellovirus. YZ, TY, and XC completed the epidemiological investigation. All of the authors have read and approved the final manuscript.

Corresponding authors

Correspondence to Tong-Ling Shan or Xi-Ping Feng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Ethics Committee of the Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University approved this study (No. 201406).

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Edited by Andrew Millard.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1612 kb)

Supplementary material 2 (DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Shan, TL., Li, F. et al. A novel phage from periodontal pockets associated with chronic periodontitis. Virus Genes 55, 381–393 (2019). https://doi.org/10.1007/s11262-019-01658-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11262-019-01658-y

Keywords

Navigation