Skip to main content

Advertisement

Log in

Chimeric protein consisting of 3M2e and HSP as a universal influenza vaccine candidate: from in silico analysis to preliminary evaluation

  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

The 23-amino acid ectodomain of influenza virus M2 protein (M2e) is highly conserved among human influenza virus variants and represents an attractive target for developing a universal vaccine. Although this peptide has limited potency and low immunogenicity, the degree of M2e density has been shown to be a critical factor influencing the magnitude of epitope-specific responses. The aim of this study was to design a chimer protein consisting of three tandem repeats of M2e peptide sequence fused to the Leishmania major HSP70 gene and evaluate its characteristics and immunogenicity. The structure of the deduced protein and its stability, aliphatic index, biocomputed half-life and the anticipated immunogenicity were analyzed by bioinformatics software. The oligonucleotides encoding 3M2e and chimer 3M2e-HSP70 were expressed in Escherichia coli and affinity purified. The immunogenicity of the purified recombinant proteins was preliminary examined in mouse model. It was predicted that fusion of HSP70 to the C-terminal of 3M2e peptide led to increased stability, hydropathicity, continuous B cell epitopes and antigenic propensity score of chimer protein. Also, the predominant 3M2e epitopes were not hidden in the chimer protein. The initial in vivo experiment showed that 3M2e-HSP chimer protein stimulates specific immune responses. In conclusion, the results of the current study suggest that 3M2e-HSP chimer protein would be an effective universal subunit vaccine candidate against influenza infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Khanna M, Sharma S, Kumar B, Rajput R (2014) Protective immunity based on the conserved hemagglutinin stalk domain and its prospects for universal influenza vaccine development. BioMed Res Int. https://doi.org/10.1155/2014/546274

    Article  PubMed  PubMed Central  Google Scholar 

  2. Munster VJ, Baas C, Lexmond P, Waldenstrom J, Wallensten A, Fransson T, Rimmelzwaan GF, Beyer W, Schutten M, Olsen B (2007) Spatial, temporal, and species variation in prevalence of influenza A viruses in wild migratory birds. PLoS Pathog 3(5):e61

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Stephenson I, Nicholson KG, Wood JM, Zambon MC, Katz JM (2004) Confronting the avian influenza threat: vaccine development for a potential pandemic. Lancet Infect Dis 4:499–509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. https://www.cdc.gov/flu/professionals/vaccination/effectiveness-studies.htm

  5. Frace AM, Klimov AI, Rowe T, Black RA, Katz JM (1999) Modified M2 proteins produce heterotypic immunity against influenza A virus. Vaccine 17:2237–2244

    Article  CAS  PubMed  Google Scholar 

  6. De Filette M, Ramne A, Birkett A, Lycke N, Löwenadler B, Min Jou W, Saelens X, Fiers W (2006) The universal influenza vaccine M2e-HBc administered intranasally in combination with the adjuvant CTA1-DD provides complete protection. Vaccine 24:544–551

    Article  CAS  PubMed  Google Scholar 

  7. Denis J, Acosta-Ramirez E, Zhao Y, Hamelin ME, Koukavica I, Baz M, Abed Y, Savard C, Pare C, Lopez Macias C, Boivin G, Leclerc D (2008) Development of a universal influenza A vaccine based on the M2e peptide fused to the papaya mosaic virus (PapMV) vaccine platform. Vaccine 26:3340–3395

    Article  CAS  Google Scholar 

  8. Wu F, Huang JH, Yuan XY, Huang WS, Chen YH (2007) Characterization of immunity induced by M2e of influenza virus. Vaccine 25:8868–8873

    Article  CAS  PubMed  Google Scholar 

  9. Zhang X, Liu M, Liu C, Du J, Shi W, Sun E, Li H, Li J, Zhang Y (2011) Vaccination with different M2e epitope densities confers partial protection against H5N1 influenza A virus challenge in chickens. Intervirology 54:290–299

    Article  CAS  PubMed  Google Scholar 

  10. Huleatt JW, Nakaar V, Desai P, Huang Y, Hewitt D, Jacobs A, Tang J, McDonald W, Song L, Evans RK, Umlauf S, Tussey L, Powell TJ (2008) Potent immunogenicity and efficacy of a universal influenza vaccine candidate comprising a recombinant fusion protein linking influenza M2e to the TLR5 ligand flagellin. Vaccine 26:201–214

    Article  CAS  PubMed  Google Scholar 

  11. Farzanehpour M, Soleimanjahi H, Hassan ZM, Amanzadeh A, Ghaemi A, Fazeli M (2013) HSP70 modified response against HPV based tumor. Eur Rev Med Pharmacol Sci 17:228–234

    CAS  PubMed  Google Scholar 

  12. Li J, Li KN, Gao J, Cui JH, Liu YF, Yang SJ (2008) Heat shock protein 70 fused to or complexed with hantavirus nucleocapsid protein significantly enhances specific humoral and cellular immune responses in C57BL/6 mice. Vaccine 26:3175–3187

    Article  CAS  PubMed  Google Scholar 

  13. Kaur J, Kaur T, Kaur S (2011) Studies on the protective efficacy and immunogenicity of Hsp70 and Hsp83 based vaccine formulations in Leishmania donovani infected BALB/c mice. Acta Trop 119:50–56

    Article  CAS  PubMed  Google Scholar 

  14. Doytchinova IA1, Flower DR (2007) VaxiJen: a server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinform 8:4

    Article  CAS  Google Scholar 

  15. CombetC BlanchetC, Geourjon C, Deléage G (2000) NPS@: network protein sequence analysis. Trends Biochem Sci 25(3):147–150

    Article  Google Scholar 

  16. Schowed T, Kopp J, Guex N, Peitch MC (2003) SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acid Res 31(13):3381–3385

    Article  Google Scholar 

  17. Yang J, Zhang Y (2015) I-TASSER server: new development for protein structure and function predictions. Nucleic Acids Res 43(W1):W174–W181

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Lovell SC, Davis IW, Arendall WB 3rd, de Bakker PI, Word JM, Prisant MG, Richardson JS, Richardson DC (2003) Structure validation by calpha geometry: phi, psi and cbeta deviation. Proteins 50:437–450

    Article  CAS  PubMed  Google Scholar 

  19. Ansari HR, Raghava GP (2010) Identification of conformational B-cell Epitopes in an antigen from its primary sequence. Immunome Res 6:6

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Ponomarenko J, Bui HH, Li W, Fusseder N, Bourne PE, Sette A et al (2008) ElliPro: a new structure-based tool for the prediction of antibody epitopes. BMC Bioinform 9(1):514. https://doi.org/10.1186/1471-2105-9-514

    Article  CAS  Google Scholar 

  21. Singh H, Raghava GP (2001) ProPred: prediction of HLA-DR binding sites. Bioinformatics 17:1236–1237

    Article  CAS  PubMed  Google Scholar 

  22. Singh H, Raghava GP (2003) ProPred1: prediction of promiscuous MHC Class-I binding sites. Bioinformatics 19:1009–1014

    Article  CAS  PubMed  Google Scholar 

  23. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259):680–685

    Article  CAS  PubMed  Google Scholar 

  24. Fotouhi F, Shaffifar M, Farahmand B, Shirian S, Saeidi M, Tabarraei A, Gorji A, Ghaemi A (2017) Adjuvant use of the NKT cell agonist alpha-galactosylceramide leads to enhancement of M2-based DNA vaccine immunogenicity and protective immunity against influenza A virus. Arch Virol 162:1251–1260

    Article  CAS  PubMed  Google Scholar 

  25. Shaw A (2011) Conserved proteins as potential universal vaccines. In: Rappuoli R, Del Giudice G (eds) Influenza vaccines for the future. Springer, Basel, pp 313–325

    Chapter  Google Scholar 

  26. Wang Y, Zhou L, Shi H, Xu H, Yao H, Xi XG, Toyoda T, Wang X, Wang T (2009) Monoclonal antibody recognizing SLLTEVET epitope of M2 protein potently inhibited the replication of influenza A viruses in MDCK cells. Biochem Biophys Res Commun 385:118–122

    Article  CAS  PubMed  Google Scholar 

  27. Treanor JJ, Tierney EL, Zebedee SL, Lamb RA, Murphy BR (1990) Passively transferred monoclonal antibody to the M2 protein inhibits influenza A virus replication in mice. J Virol 64:1375–1377

    PubMed Central  CAS  PubMed  Google Scholar 

  28. Fan J, Liang X, Horton MS, Perry HC, Citron MP, Heidecker GJ, Fu TM, Joyce J, Przysiecki CT, Keller PM, Garsky VM, Ionescu R, Rippeon Y, Shi L, Chastain MA, Condra JH, Davies ME, Liao J, Emini EA, Shiver JW (2004) Preclinical study of influenza virus A M2 peptide conjugate vaccines in mice, ferrets, and rhesus monkeys. Vaccine 22:2993–3003

    Article  CAS  PubMed  Google Scholar 

  29. Neirynck S, Deroo T, Saelens X, Vanlandschoot P, Jou WM, Fiers W (1999) A universal influenza A vaccine based on the extracellular domain of the M2 protein. Nat Med 5(10):1157–1163

    Article  CAS  PubMed  Google Scholar 

  30. Eliasson DG, El Bakkouri K, Schön K, Ramne A, Festjens E, Löwenadler B, Fiers W, Saelens X, Lycke N (2008) A novel mucosal adjuvant targeted influenza vaccine. Vaccine 26:1243–1252

    Article  CAS  PubMed  Google Scholar 

  31. Feng J, Zhang M, Mozdzanowska K, Zharikova D, Hoff H, Wunner W, Couch RB, Gerhard W (2006) Influenza A virus infection engenders a poor antibody response against the ectodomain of matrix protein 2. Virol J 3:102

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Liu W, Chen YH (2005) High epitope density in a single protein molecule significantly enhances antigenicity as well as immunogenicity: a novel strategy for modern vaccine development and a preliminary investigation about B cell discrimination of monomeric proteins. Eur J Immunol 35:505–514

    Article  CAS  PubMed  Google Scholar 

  33. Babapoor S, Neef T, Mittelholzer C, Girshick T, Garmendia A, Shang H, Khan MI, Burkhard P (2011) A novel vaccine using nanoparticle platform to present immunogenic M2e against avian influenza infection. Influenza Res Treat 2011:126794

    PubMed  Google Scholar 

  34. Kilic A, Mandal K (2012) Heat shock proteins: pathogenic role in atherosclerosis and potential therapeutic implications. Autoimmune Dis 2012:502813

    PubMed Central  PubMed  Google Scholar 

  35. Ebrahimi SM, Dabaghian M, Tebianian M, Jazi MH (2012) In contrast to conventional inactivated influenza vaccines, 4xM2e.HSP70c fusion protein fully protected mice against lethal dose of H1, H3 and H9 influenza A isolates circulating in Iran. Virology 430:63–72

    Article  CAS  PubMed  Google Scholar 

  36. Rafati S, Gholami E, Hassani N, Ghaemimanesh F, Taslimi Y, Taheri T, Soong L (2007) Leishmania major heat shock protein 70 (HSP70) is not protective in murine models of cutaneous leishmaniasis and stimulates strong humoral responses in cutaneous and visceral leishmaniasis patients. Vaccine 25:4159–4169

    Article  CAS  PubMed  Google Scholar 

  37. Crasto CJ, Feng JA (2000) LINKER: a program to generate linker sequences for fusion proteins. Protein Eng 13:309–312

    Article  CAS  PubMed  Google Scholar 

  38. George RA, Heringa J (2002) An analysis of protein domain linkers: their classification and role in protein folding. Protein Eng 15:871–879

    Article  CAS  PubMed  Google Scholar 

  39. Argos P (1990) An investigation of oligopeptides linking domains in protein tertiary structures and possible candidates for general gene fusion. J Mol Biol 211:943–958

    Article  CAS  PubMed  Google Scholar 

  40. Fu TM, Grimm KM, Citron MP, Freed DC, Fan J, Keller PM, Shiver JW, Liang X, Joyce JG (2009) Comparative immunogenicity evaluations of influenza A virus M2 peptide as recombinant virus like particle or conjugate vaccines in mice and monkeys. Vaccine 27:1440–1447

    Article  CAS  PubMed  Google Scholar 

  41. Huber VC, McKeon RM, Brackin MN, Miller LA, Keating R, Brown SA, Makarova N, Perez DR, Macdonald GH, McCullers JA (2006) Distinct contributions of vaccine-induced immunoglobulin G1 (IgG1) and IgG2a antibodies to protective immunity against influenza. Clin Vaccine Immunol 13(9):981–990

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Nimmerjahn F, Ravetch JV (2005) Divergent immunoglobulin G subclass activity through selective Fc receptor binding. Science 310:1510–1512

    Article  CAS  PubMed  Google Scholar 

  43. Shokouhi H, Farahmand B, Ghaemiph A, Mazaheri V, Fotouhi F (2018) Vaccination with three tandem repeats of M2 extracellular domain fused to Leismania major HSP70 protects mice against influenza A virus challenge. Virus Res 251:40–46

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Masoumeh Tavassoti Kheiri and Dr. Reza Ahangari Cohan for kindly editing the manuscript.

Funding

This work was funded by Grant No. 759 from Pasteur Institute of IRAN.

Author information

Authors and Affiliations

Authors

Contributions

Fatemeh Fotouhi, Behrokh Farahmand and Najmeh Taheri designed the construct, performed the analysis and wrote the manuscript. Hadiseh Shokouhi evaluated immune responses. Fatemeh Fotouhi supervised this work. Hoorieh Soleimanjahi reviewed and approved the final manuscript.

Corresponding author

Correspondence to Fatemeh Fotouhi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving in animals participant

Pasteur Institute of Iran, Ethic code: IR.PII.REC.1394.39.

Additional information

Edited by Juergen Richt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 12 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farahmand, B., Taheri, N., Shokouhi, H. et al. Chimeric protein consisting of 3M2e and HSP as a universal influenza vaccine candidate: from in silico analysis to preliminary evaluation. Virus Genes 55, 22–32 (2019). https://doi.org/10.1007/s11262-018-1609-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11262-018-1609-5

Keywords

Navigation