Skip to main content
Log in

The efficacy of antisense-based construct for inducing resistance against Croton yellow vein mosaic virus in Nicotiana tabacum

  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

Begomoviruses have increased pathogenicity because of their adaptation to a wide host range; consequently, these viruses cause a major loss to agroeconomic crops worldwide. In this study, we designed a gene construct representing an antisense coat protein gene. We also analyzed the efficacy of the induced resistance against Croton yellow vein mosaic virus (CrYVMV) affecting papaya in Nicotiana tabacum plants. Positive control plants developed typical leaf curl symptoms, whereas transgenic plants were symptomless. Moreover, the key component (i.e., short interfering RNA) of the antisense pathway was upregulated in transgenic plants. This finding demonstrates the activation of the gene silencing mechanism in transgenic plants. Thus, these results confirm that our construct is functional and effectively induces transient resistance against CrYVMV infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S. Asad, W.A. Haris, A. Bashir, Y. Zafar, K.A. Malik, N.N. Malik, C.P. Lichtenstein, Arch. Virol. 148, 2341–2352 (2003)

    Article  CAS  PubMed  Google Scholar 

  2. I.S. Afolabi, I.O. Osikoya, O.D. Fajimi, P.I. Usoro, D.O. Ogunleye, T. Bisi-Adeniyi, A.O. Adeniyi, B.T. Adekeye, BMC Complement. Altern. Med. 12, 262 (2012)

    Article  PubMed  PubMed Central  Google Scholar 

  3. D.C. Baulcombe, Nature 431, 356–363 (2004)

    Article  CAS  PubMed  Google Scholar 

  4. R.W. Briddon, J. Stanley. Virol. 344, 198–210 (2006)

    CAS  Google Scholar 

  5. J.K. Brown, A.M. Idris, I. TorresJerez, G.K. Banks, S.D. Wyatt, Arch. Virol. 146, 1581–1598 (2001)

    Article  CAS  PubMed  Google Scholar 

  6. R. Dickerson, B. Deshpande, U. Gnyawali, D. Lynch, G. Gordillo, D. Schuster, K. Osei, S. Roy, Antioxid. Redox Signal. 17, 485–491 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. J.J. Doyle, J.L. Doyle, Focus 12, 13–15 (1990)

    Google Scholar 

  8. R. Hofgen, L. Willmitzer, Nucl. Acid Res. 16, 9877 (1988)

    Article  CAS  Google Scholar 

  9. R.B. Horsch, J.E. Fry, N.L. Hoffman, D. Eichholtz, S.G. Rogers, R.T. Fraley, Science 227, 1229–1231 (1985)

    Article  CAS  Google Scholar 

  10. A.K. Inoue-Nagata, M.F. Lima, R.L. Gilbertson, Hortic. Bras. 34, 8–18 (2016)

    Article  Google Scholar 

  11. J.A. Khan, J. Ahmad, Curr. Sci. 88, 1803–1809 (2005)

    CAS  Google Scholar 

  12. J.A. Khan, J. Dijkstra, Plant Viruses as Molecular Pathogens (The Haworth Press, New York, 2006)

    Google Scholar 

  13. A. Kumar, S.K. Snehi, S.K. Raj, J. Kumar, J.A. Khan, New Dise. Rep. 25, 9 (2011)

    Article  Google Scholar 

  14. R. Kumria, R. Verma, M.V. Rajam, Curr. Sci. 74, 35–41 (1998)

    CAS  Google Scholar 

  15. J.A. Lindbo, W.G. Dougherty, Annu. Rev. Phytopathol. 43, 191–204 (2005)

    Article  CAS  PubMed  Google Scholar 

  16. S. Mansoor, R.W. Briddon, Y. Zafar, J. Stanley, Trends Plant Sci. 8, 128–134 (2003)

    Article  CAS  PubMed  Google Scholar 

  17. S. Mansoor, S.H. Khan, A. Bashir, M. Saeed, Y. Zafar, K.A. Malik, R.W. Briddon, J. Stanley, P.G. Markham, Virology 259, 190–199 (1999)

    Article  CAS  PubMed  Google Scholar 

  18. S. Martino-Catt, E.S. Sachs, Plant Physiol. 147, 3–5 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. P. Melariri, W. Campbell, P. Etusim, P. Smith, J. Parasitol. Res. (2011). doi:10.1155/2011/10495

    PubMed  PubMed Central  Google Scholar 

  20. M. Mishra, N. Shukla, R. Chandra, Protocols for micropropagation of woody trees and fruits (Springer, New York, 1996), pp. 437–441

    Google Scholar 

  21. E. Panzarini, M. Dwikat, S. Mariano, C. Vergallo, L. Dini, Evid. Comp. Altern. Med. (2014). doi:10.1155/2014/281508

    Google Scholar 

  22. P. Powell-Abel, R.S. Nelson, B. De, N. Hoffman, S.G. Rogers, R.T. Fraley, R.N. Beachy, Science 232, 738–743 (1986)

    Article  Google Scholar 

  23. J. Sambrook, E.F. Fritsch, T. Maniatis, Molecular Cloning—A Laboratory Manual (Cold Spring harbour Laboratory, New York, 1989)

    Google Scholar 

  24. J. Sambrook, D.W. Russel, Molecular Cloning: A laboratory manual, 3rd edn. (Cold Spring Harbor Laboratory Press, New York, 2001)

    Google Scholar 

  25. V. Sinha, A. Kumar, N.B. Sarin, D. Bhatnagar, Int. J. Adv. Res. 4(3), 1598–1604 (2016)

    Google Scholar 

  26. S. Subenthiran, T.C. Choon, K.C. Cheong, R. Thayan, M.B. Teck, Evid-Based Comp. Alt. Med. (2013). doi:10.1155/2013/616737

    Google Scholar 

  27. P.A. Tarkang, A.P.N. Atchan, J. Kuiate, F.A. Okalebo, A.N. Guantai, G.A. Agbor, Adv. Pharmacol. Sci. 13, 1 (2013)

    Google Scholar 

  28. K.M. Thomas, C.S. Krishnaswamy, Curr. Sci. 8, 316 (1939)

    Google Scholar 

  29. A. Varsani, D.P. Martin, J. Navas-Castillo, E. Moriones, C. Hernández-Zepeda et al., Arch. Virol. 158, 1873–1882 (2014)

    Article  Google Scholar 

  30. H. Vaucheret, Genes Dev. 20, 759–771 (2006)

    Article  CAS  PubMed  Google Scholar 

  31. C.R. Wilson, A.J. Doudna, Annl. Rev. Biophy. 42, 217–239 (2013)

    Article  CAS  Google Scholar 

  32. Z. Xie, L.K. Johansen, A.M. Gustafson, K.D. Kasschau, A.D. Lellis, PLoS Biol. 2, E104 (2004)

    Article  PubMed  PubMed Central  Google Scholar 

  33. P. Yadava, G. Suyal, S.K. Mukherjee, Curr. Sci. 98, 360–368 (2010)

    CAS  Google Scholar 

  34. M. Yusha’u, F.C. Onuorah, Y. Murtala, J. Pure. Appl. Sci. 2, 75–78 (2009)

    Google Scholar 

  35. D. Zilberman, X. Cao, L.K. Johansen, Z. Xie, J.C. Carrington, S.E. Jacobsen, Curr. Biol. 14, 1214–1220 (2004)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors are thankful to UGC for funding to the lab.

Author information

Authors and Affiliations

Authors

Contributions

DB helped in experimental designing. VS has done all the experimental part. NBS supervised this study and gave final approval for manuscript submission.

Corresponding author

Correspondence to V. Sinha.

Ethics declarations

Conflict of interest

Authors do not have any conflict of interest.

Informed consent

The study was approved by ethical committee of JNU, New Delhi.

Research involving human participants

No animals were used in this study.

Additional information

Edited by Seung-Kook Choi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sinha, V., Sarin, N.B. & Bhatnagar, D. The efficacy of antisense-based construct for inducing resistance against Croton yellow vein mosaic virus in Nicotiana tabacum . Virus Genes 53, 906–912 (2017). https://doi.org/10.1007/s11262-017-1499-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11262-017-1499-y

Keywords

Navigation